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We examine innovation as a market-entry timing game with complete information and observable actions. We
characterize all pure-strategy subgame perfect equilibria for the two-player symmetric model allowing both the
leader’s and the follower’s payoff functions to be multi-peaked, non-monotonic and discontinuous. We provide
sufficient conditions for when the equilibria can be Pareto-ranked andwhen the equilibrium is unique. Economic
applications discussed include process and product innovation and the timing of the sale of an asset.
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1. Introduction

The availability of new products and processes underlies economic
development and improvements in welfare (Romer, 1994). But new
technology does not automatically equate to innovation in the
marketplace. Rather, any innovation—be it market entry with a new
product or adoption of a new production process—must be deliberately
implemented as part of a firm’s profit-maximizing strategy. Following
Fudenberg and Tirole (1985), Dutta et al. (1995) and Hoppe and
Lehmann-Grube (2005), we study an innovation-timing game in
which two competingfirms consider the optimal time to enter amarket.

In this paper, we extend these existing market entry models in
several dimensions. First, we generalize both the leader’s and the
follower’s profit functions, solving for the pure-strategy subgame
perfect equilibria when payoffs for both firms can be non-monotonic

ormulti-peaked. In thisway, our framework allows us to solve a broader
range of economic problems than was previously possible. For example,
in Section 3.1 we show that a process-innovation or a product-
innovation model, augmented with an experience good or some
switching cost, can generate a non-monotonic payoff for both the leader
and the follower. The same point can bemade for the profit derived from
an asset; the revenue generated can vary non-monotonically depending
on the time of sale. Unlike existing methods, the solution algorithm
developed here is able to allow for any possible continuous payoff
structure.

Second, ourmodel is sufficiently general to accommodate discontinu-
ities in payoffs. Discontinuities arise in a variety of situations; for instance,
at some point in time (in terms of the leader’s entry time), the regulatory
environment could change, creating a discontinuity in the leader’s or the
follower’s payoff (or both).1 As an example, consider the situation when
the patent for a production process is due to expire at a known time.
This change might cause a discrete decrease in a firm’s entry costs,
resulting in a discontinuous jump in its payoff. Alternatively, the provision
of complementary technologies in related markets, such as new
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1 As noted by Bobtcheff and Mariotti (2012), many factors that affect an entrant’s prof-
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ity in payoffs for the remaining firms in a timing game similar to the one we study here.

http://dx.doi.org/10.1016/j.ijindorg.2015.06.003
0167-7187/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

International Journal of Industrial Organization

j ourna l homepage: www.e lsev ie r .com/ locate / i j i o

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijindorg.2015.06.003&domain=pdf
http://dx.doi.org/10.1016/j.ijindorg.2015.06.003
mailto:vladimir.smirnov@sydney.edu.au
mailto:andrew.wait@sydney.edu.au
http://dx.doi.org/10.1016/j.ijindorg.2015.06.003
http://www.sciencedirect.com/science/journal/01677187
www.elsevier.com/locate/ijio


software applications for a particular type of phone handset, could
create a discontinuity in the entrants’ payoffs. Similarly, the product
choices of firms selling substitute products, such as tablets, may
disrupt the phone handset sellers, generating discontinuities.

Some of the key results in the paper are as follows. In characterizing
all pure-strategy subgame perfect equilibria, we find that there can be
multiple equilibria. First, there could be a set of equilibria that exhibit
rent equalization. The leader’s entry times in these equilibria occur at
times when the leader and follower payoff curves intersect and the
leader’s payoff is at a historic maximum for the game up until that
time; they are similar to the joint-adoption equilibria in Fudenberg
and Tirole (1985). Second, equilibria can exist with the leader entering
at points of discontinuity, for example, if the leader receives a higher
payoff than the follower at this time, and that the expected payoff in
equilibrium is higher than the payoff from entering as a leader at any
earlier time. An example of this is immediate entry at the very start of
the game when both firms prefer to be first into the market. Third,
there can be equilibria with asymmetric payoffs, like the second-mover
advantage equilibrium of Hoppe and Lehmann-Grube (2005) and the
maturation equilibrium of Dutta et al. (1995). Finally, when there
are multiple equilibria, we provide sufficient conditions to ensure
that these equilibria can be Pareto ranked. We also outline sufficient
conditions for when the subgame perfect equilibrium is unique.

This paper draws on an extensive literature on innovation timing
games.2 Our analysis of an irreversible investment decision with
complete information and observable actions (closed-loop equilibria)
follows Fudenberg and Tirole (1985), Dutta et al. (1995) and Hoppe
and Lehmann-Grube (2005). This framework has been used to study a
variety of applications. For example, Argenziano and Schmidt-Dengler
(2012, 2013, 2014) adopt a variant of Fudenberg and Tirole (1985) to
examine the order of market entry, clustering and delay. They show
that with many firms the most efficient firm need not be the first to
enter the market and that delays are non-monotonic with the number
of firms. In addition, they suggest a new justification for clustering of
entries.3

An alternative approach to study innovation is to assume players’
actions are unobservable as in Reinganum (1981a, 1981b). In her
models, unobservable actions are equivalent to each firm being able to
pre-commit to its strategy at the start of the game. Reinganum shows
that in the (open-loop) equilibria, there will be diffusion in the sense
that firms adopt the technology at different dates, even though all
firms are ex ante identical. Park and Smith (2008) develop an innovation
game with unobservable actions that permits any firm (in terms of the
order of entry) to receive the highest payoff. This allows for a war of
attrition, with higher payoffs for late movers, a preemption game with
higher payoffs for early movers and a combination of both. They solve
for the (open-loop)mixed-strategy equilibria.4 As a point of comparison,
in ourmodel, firms use feedback rules to determine their strategy at any
particular point in time; this means that they are unable to commit to
their strategy at the beginning of the game.

Finally, several other authors consider innovation when there is
asymmetric information. For example, Bobtcheff and Mariotti (2012),
Hendricks (1992) and Hopenhayn and Squintani (2011) assume that a
firm’s capability to innovate is private information. In these models,
delay allows a firm to get better information about the potential

innovation (its costs, value, and so on), but waiting runs the risk that a
rival will innovate first, capturing the lion’s share of the returns.

2. The model

Assume two firms (i=1, 2) are in a continuous-time stopping game
starting at t=0until some terminating time T ∈ (0,∞]. Firm i’s decision
to stop (that is, ‘enter’ the market) at ti ≥ 0 can only be made once, and
this decision is irreversible and observable immediately by the other
firm. The game ends when both players have stopped. Firm i’s payoff
depends on the stopping times of both firms: πi(t1, t2). If the game
ends with the two players stopping at different times, assume that the
payoffs of the leader and the follower are L(t1, t2) = πi(t1, t2) and
F(t1, t2) = πj(t1, t2), respectively, ti b tj where i, j = 1, 2 and i ≠ j.

We make the following standard assumptions.

Assumption1. Time is continuous in that it is ‘discrete but with a grid that
is infinitely fine’.

Assumption 2. Firms always choose to stop earlier rather than later in
payoff-equivalent situations.

Assumption 3. If more than one firm chooses to stop (enter) at exactly
the same time, one of these firms is selected to stop (each with probability
1
2 ex ante); the other firm is then able to reconsider its decision to stop at
this time.

Equivalent assumptions are adopted in the literature. For example,
Assumption 1 replicates A1 of Hoppe and Lehmann-Grube (2005). It
invokes Simon and Stinchcombe (1989), who show that under certain
conditions, a continuous-time strategy profile is the limit of a
discrete-time game with increasingly fine time grids.5 Assumption 2,
which is very similar to A3 inHoppe and Lehmann-Grube (2005), allows
us to focus on just one (payoff-equivalent) equilibrium in the case of
indifference between early and late entry.6 This simplifies our analysis
so as to focus on the timing of entry rather than on issues of equilibrium
selection.

Assumption 3—part of A3 in Hoppe and Lehmann-Grube (2005)
and Assumption 5 in Dutta et al. (1995)—avoids potential coordination
failures involving simultaneous entry. Given its importance, further
discussion of the intuition underlying this assumption is worthwhile.
This assumption can be justified in several ways. In some situations, as
a practical matter, if two firms try to enter the market at the same time,
there might be some capacity constraint or institutional requirement
that prevents joint entry—consequently, only one firm becomes the
leader and the other firm is relegated to the role of second entrant.
For example, in a particular market, there could be a bureaucratic rule
which requires that the leadership role be allocated to the firm that
has the first email registered in a designated inbox. Even if both firms
simultaneously send their messages, only one email can arrive first.
As a consequence, with simultaneous moves, each firm has some
probability of being the leader. In our model, Assumption 3 gives either
firm an equal chance of having its email received first.7

Following Fudenberg and Tirole (1985), we use subgame perfection
as our equilibrium concept. A history ht is defined as the knowledge of
whether or not firm i = 1, 2 previously stopped at any time t̂ b t, and
if so when. A strategy of firm i, denoted by σi(ht), indicates at each his-
tory ht whether firm i stops at t (σi(ht) = 1) or does not stop at t2 See Hoppe (2002) or Van Long (2010, Chapter 5) for a survey of the literature. Further,

Fudenberg and Tirole (1991) consider innovation when the firms make one irreversible
decision (to enter) in a simple timing-game framework (see Sections 4.5 and 4.12).

3 Timing games have been studied in a number of other contexts. Katz and Shapiro (1987)
analyze an innovation gamewith heterogenousfirmswhen there is licencing (by the leader)
and imitation (by the follower). Dutta and Rustichini (1993) consider a stochastic timing
game with continuous payoffs. Gale (1995) shows that inefficient delays can occur when n
players make a one-off investment decision in a dynamic coordination game.

4 They also briefly consider observable actions and show that there are multiple
equilibria.

5 See Hoppe and Lehmann-Grube (2005), footnote 4 for a further discussion.
6 Hoppe and Lehmann-Grube (2005) assume that if the follower is indifferent between

twoalternative entry times, it chooses the earliest time. For consistency,we extend this as-
sumption to both firms.

7 Dutta et al. (1995) present a similar rationale for this assumption, suggesting there could
be small random delays between when a decision is made and when a new technology is
adopted that provide some probability that either firm will be first in the event of joint
adoption.
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