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substantially different loss than choosing one that is larger by the same amount. Therefore, when the revenue
function is unknown, it is important to consider uncertainty around the revenue function and its asymmetric

structure. For this purpose, I propose a Bayesian decision rule and illustrate its typical revenue gains. I then
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apply the rule to the bid data from the U.S. timber sales.
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1. Introduction

Auctions are widely used to allocate important economic resources
such as timber harvesting rights, radio frequency spectra, and offshore
oil and gas rights. Since allocation outcomes in these markets may affect
a number of economic sectors, policymakers must carefully devise
the trading rules. In the auction literature, a particular pair of policy
objective and parameter has been studied intensively: revenue
maximization and choice of reserve price.! Even for this popular
topic, however, optimal decision-making under uncertainty has not
been formally discussed.

Myerson (1981) as well as Riley and Samuelson (1981) developed
the economic theory on optimal auction design, assuming that the
policymaker knows the density function of bidders' values (willingness
to pay). When the density is unknown, Paarsch (1997) proposed to
choose the revenue maximizing reserve price (RMRP) following
Riley and Samuelson (1981), but he derived the maximum likelihood
estimator (MLE) of the valuation distribution and used the point
estimate in place of the true density (‘plug-in’). The literature has
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Wooders, and Mo Xiao. [ appreciate useful comments from Gaurab Aryal, Yuanyuan Gu,
Mohamad Khaled, and participants at the seminars at University of Arizona and
University of Auckland. I also thank the co-Editor, Harry J. Paarsch, and two anonymous
referees for useful and insightful suggestions, which substantially improved the quality
and the scope of the paper.
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! Following the convention in the auction literature, I use the term ‘revenue’ to refer to
the policymaker's expected revenue where the expectation is taken with respect to the
valuation distribution.
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unanimously used this approach (but not necessarily using the MLE).
Examples include Li and Perrigne (2003), Li et al. (2003), Kim and Lee
(2009), Krasnokutskaya (2011), Menzel and Morganti (2010), and
Roberts (2009).2

When a policymaker follows the plug-in rule, however, he acts as if
the valuation density equals its point estimate. That is, he ignores
uncertainty concerning the valuation density. The concept of uncertainty
here differs from what confidence intervals quantify. A confidence
interval captures some variation of the plug-in rule (as an estimator of
the RMRP) assuming that the valuation density equals its point estimate.
It also ignores the uncertainty regarding the valuation density that
matters in decision making.

In this paper, I argue that the policymaker can obtain higher
revenues by formally considering uncertainty about the revenue and
its structure. In particular, I consider a standard auction for a single
good with no entry fee and a fixed number of risk neutral bidders
whose private values are independently and identically distributed.
For this type of auction, the RMRP does not depend on the number of
bidders (see Riley and Samuelson, 1981) and, hence, neither does the
plug-in rule. Yet, the revenue structure does.

The revenue function is typically a unimodal function of reserve
price, which is strictly positive except at the upper boundary of the
support of the valuation density. Whenever a bidder is added, the entire

2 Haile and Tamer (2003), Quint (2008), and Aradillas-Lopez et al. (2013) have
considered incomplete auction models where the valuation distribution is partially
identified. They have provided interval estimates of the RMRP using the set estimator of
the valuation distribution. In Section 7, I discuss some extensions including such partially
identified models.
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revenue curve except at the boundary shifts up, but the revenue
difference between the RMRP and any reserve price that is lower than
the RMRP becomes smaller, while it is always zero at the upper
boundary. Thus, for a large number of bidders, the revenue function
becomes fairly constant below the RMRP, but drops above it. Such an
asymmetric revenue structure suggests that a reserve price larger than
the RMRP causes a greater revenue loss than does a smaller one. Thus,
when a policymaker is uncertain about the revenue function and,
therefore, cannot correctly choose the RMRP, he should prefer small
reserve prices to large ones. The question is, how small? The answer
depends on the amount of uncertainty and the structure of the revenue
function. Therefore, by formally considering such decision relevant
elements, the policymaker can increase revenues.

To solve the policymaker's problem, I employ a Bayesian decision
framework. The method begins with the prior, a probability distribution
that reflects the policymaker's beliefs concerning the structural
parameter of the valuation density.> Employing the Bayes theorem, I
update the prior using the bid data. The updated prior, now referred
to as the posterior, represents all the perceived uncertainty concerning
the parameter after formally considering the initial beliefs and the
sample information.

Since the revenue function depends on the valuation density, it is
also indexed by the structural parameter. Thus, the posterior quantifies
the uncertainty around the revenue function, and can be used for
computing the expectation of the revenue at every reserve price. The
decision procedure, finally, maximizes this posterior mean of revenue.
Savage (1954) as well as Anscombe and Aumann (1963) have argued
that this is a coherent behavior under a set of behavioral axioms.

This procedure is shown to be optimal under the average risk
principle, which is a widely used frequentist criterion. More generally,
Berger (1985) argued that any rational decision method must correspond
to some type of Bayesian method. Any debate regarding Bayesians versus
frequentists is, therefore, irrelevant to what I claim here: use an optimal
decision rule to solve a decision problem. From a frequentist perspective,
using repeated sampling, I demonstrate the revenue gains under the
Bayes rule relative to the Bayesian plug-in rule for a range of data
generating processes (DGPs). Since two approaches become similar as
the sample size grows, the Bayes rule is more valuable for small sample
problems.

The Bayes rule exploits some prior beliefs about the valuation
density. Since it selects a reserve price without completely determining
the valuation density, the method shares the spirit of the Wilson
doctrine, which argues that a mechanism should not depend on
implausibly detailed information. For example, the valuation density
at an auction; see Wilson (1987).

In the next section, I describe the auction model under consideration
and motivate a formal decision framework. In Section 3, I propose the
Bayesian decision rule, while in Section 4, I discuss the concepts of
uncertainty and optimality. I provide evidence from a Monte Carlo
study and analyze a sample from the U.S. timber sales in Sections 5
and 6, respectively. I conclude in Section 7, and collect computational
details in an appendix.

2. Policymaker's problem: revenue maximization

An indivisible object is to be allocated to one of N risk-neutral,
expected-utility maximizing bidders. Bidders' values, x1,..., Xy, are
independently drawn from an absolutely continuous distribution
characterized by a probability density function (pdf) f having bounded
support [0, X]. The values are private information.

An auction is said to be standard if its rule allocates the object to the
bidder with the highest bid, provided his bid is not lower than reserve

3 The prior beliefs may come from similar sales, the policymaker's experience, and/or a
widely held common sense. For example, the policymaker for timber sales in Montana
may form a prior using some results from timber auctions in California.

price p. I consider a class of standard auctions at which a bidder
with zero value expects to pay zero. For every auction in this class,
Myerson, 1981 as well as Riley and Samuelson, 1981 have argued that
a Bayes—Nash equilibrium with a symmetric strictly increasing bidding
strategy yields the same revenue (revenue equivalence principle), and
if the policymaker's value is zero, the revenue at p is given as

u(f.p:N) = No[1=F(p)}F(p)" ™"
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where F(x) := _fg flt)dt is the cumulative distribution function (cdf) of
the valuation distribution.*

Assume that every bidder follows the equilibrium bidding strategy
associated with Eq. (1). For example, it is optimal for a bidder with
x> p to follow

BN f) = - [ 7] Ty )

at a first-price, sealed-bid auction, and it is
By(xIN, f) ==x 3)

at a second-price, sealed-bid auction.” In light of the revenue equivalence
principle, I focus on the problem of choosing p to maximize the revenue,
abstracting from the details of a specific auction rule.

If f were known, then the policymaker would maximize Eq. (1). Let
As(x):=f(x) / [1 — F(x)] denote the hazard rate function. When the
seller's valuation is zero, the necessary condition for maximizing
expression (1) is then

PAf(p) = 1. 4)

If A{-) is increasing, Eq. (4) is also sufficient; see Krishna (2002).
Note that the RMRP only depends on f, but not on N. Thus, let

Pr(f) = argmaxu(f, piN) (5)

denote the RMRP under f. In this paper, I consider a policymaker who
does not know f, but has a sample of bids that is informative about f.

For choosing a reserve price, Paarsch (1997) developed the plug-in
rule. He estimated the valuation density using the MLE and proposed
to choose pg f) where f denotes the point estimate of f. While the
article did not spell out, presumably, the argument is that the MLE of a
function of the parameters is just the function of the MLE of the
parameters.

Since Paarsch (1997), the empirical auction literature has employed
the plug-in rule only, but often using estimates derived by procedures
other than the MLE. Notice that such an approach does not fully exploit
the shape of the function in Eq. (1), which is useful when the policymaker
cannot correctly choose pg(f). In Figs. 1 and 2, I depict a set of valuation
densities (panels (a) and (b)) and their revenue functions for the number
of bidders N =3, 4, and 5 (panels (c) and (d)). In Fig. 1, panels (a) and
(c) are associated with a density that is similar to an exponential
distribution, and panels (b) and (d) with a long-tailed density.® In
Fig. 2, I depict densities that are similar to a lognormal with alternative
parameters.’

4 The revenue function of the policymaker with value xo >0 is u(fp;N) + xoF(p)".

5 It is optimal to bid any price less than p, if x<p.

5 These densities have the form of Eq. (13) with k = 15. For the exponential-like density,
the parameter values are 6: =(0.3548, 0.2350, 0.1486, 0.0946, 0.0466, 0.0440, 0.0217,
0.0119, 0.0089, 0.0080, 0.0084, 0.0081, 0.0049, 0.0028, 0.0017) and for the long-tailed
density, 8: =(0.0748, 0.1403, 0.1871, 0.5145, 0.0009, 0.0009, 0.0009, 0.0009, 0.0009,
0.0009, 0.0009, 0.0750, 0.0009, 0.0009, 0.0002).

7 The lognormal distributions with (1,0) = (3,1) and (4,1/2) are truncated at the 99th
percentile and rescaled, so their supports are the unit interval.
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