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A general analytical solution is derived by using the Laplace transformation to describe transient
reactive silica transport in a conceptualized 2-D system involving a single fracture embedded in an
impervious host rock matrix. This solution differs from previous analyses in that it takes into account
both hydrodynamic dispersion and advection of silica transport along the fracture, and hence takes the
form of an infinite integral. Several illustrative calculations are undertaken to confirm that neglecting
the dispersion term may lead to erroneous silica distribution along the fracture and within the host
matrix, and the error becomes severe with a smaller rate of fluid flow in the fracture. The longitudinal

dispersion is negligible only at steady state or when the flow rate in the fracture is higher. The
analytical solution can serve as a benchmark to validate numerical models that simulate reactive mass
transport in fractured porous media.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that fractures play an important role in
controlling fluid flow, heat transfer and contaminant transport,
due to their commonly higher permeability compared with that
of the host media. If the fluid flow rate is assumed to be constant
in a single fracture or a set of parallel fractures embedded in an
impervious host rock, then analytical solutions are derivable to
define non-reactive solute transport (e.g., Tang et al., 1981; Sudicky
and Frind, 1982; Ling et al., 2002; West et al., 2004) and heat
transport (e.g., Bodvarsson, 1969; Gringarten et al., 1975; Lowell,
1976; Yang et al,, 1998). More recently, Graf and Simmons (2009)
considered variable-density flow and solute transport in a vertical
fracture by adding a density-driven flow component to the standard
Tang et al. (1981) analytical solution.

Quartz is most common in the upper crust, and its precipitation
and dissolution have drawn constant attention due to the essential
role in altering crustal porosity and permeability and hence impacting
the dynamics of fluid flow and contaminant transport as well as the
thermal regime (e.g., Fournier, 1983, 1985; Brady and Walther, 1989;
Lowell et al., 1993; Tester et al., 1994; Dove, 1999). Silica (an aqueous
form of quartz) and its transport in a single fracture have been
addressed analytically by Steefel and Lichtner (1998) to verify their
numerical scheme that aims at modeling the reaction front geometry
in a discrete fracture-matrix system. The same analytical solution has
also been employed recently by Graf and Therrien (2007) to validate
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their 3-D numerical model that simulates coupled fluid flow, heat and
single-species reactive mass transport in fractured porous media. In
deriving the analytical solution, however, the previous studies failed
to take into account molecular diffusion and mechanical dispersion of
silica transport in the fracture, which is problematic especially for the
case with low flow rate in the fracture.

The purpose of this paper is to derive a general analytical
solution subject to all diffusive and dispersive processes for accurate
determination of silica transport along a single fracture and within
the host matrix. The present approach differs from previous solu-
tions (e.g., Sudicky and Frind, 1982) since the rate coefficients are
unique for the matrix and fracture. Several case calculations are
presented to illustrate the negative impact resulting from neglecting
such a longitudinal dispersion term in the fracture. The paper also
investigates how a variation in fluid velocity influences the silica
distribution and under what conditions the longitudinal dispersion
becomes negligible. The analytical solution developed here is
particularly useful in evaluating the accuracy of numerical models
of reactive mass transport in fractured porous media, and is also
helpful in obtaining a first-order estimate of the transport solution
prior to numerical modeling.

2. Conceptualized physicochemical system and
governing equations

A thin rigid fracture is embedded in a porous matrix, as illustrated
in Fig. 1. Aqueous silica is assumed to be the only species that
undergoes chemical interactions (dissolution/precipitation) with the
rock matrix. The entire domain is saturated with silica-saturated
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Fig. 1. A 2-D conceptualized fracture-matrix system.

fluid and is in thermodynamic equilibrium. Silica-free freshwater
enters the fracture inlet on the top and dilutes the silica-saturated
fluid in the fracture and the host matrix, resulting in a drop of silica
concentration in the domain. Heat transport is not considered in this
study, but a constant background temperature is imposed.

It is assumed that the silica-free freshwater velocity in the
fracture vy is constant, the width of the fracture 2b is much
smaller than its length so that the variation in silica concentration
across the fracture’s aperture is negligible, the permeability and
porosity of the porous matrix are very low so that silica transport
within the matrix is mainly by molecular diffusion, and that silica
transport along the fracture by molecular diffusion, mechanical
dispersion and advection is much faster than transport within the
matrix. It is further assumed that the material properties (i.e.,
matrix porosity, permeability, fracture aperture, and mineral
surface areas) are constant. These assumptions provide the basis
for a 1-D representation of silica transport along the fracture itself
and for taking the direction of silica flux in the porous matrix to be
perpendicular to the facture. This results in the simplification of the
basically 2-D system to two orthogonal, coupled 1-D systems.

The quartz-water reaction defined in the above physiochem-
ical system can be described as

SiOZ(s) —I—ZHzo(aq) <=>H4Sio4(aq)- (1)

where SiO,is solid quartz, and H4SiO4(q) is aqueous silica. Let
Chnand Cf represent the molal concentration of silica in the host
matrix and fracture, respectively, and organize them in the form

Cm=Cn+Ke and Cp=Cr+Keq, @)

where K4 is the quartz solubility (or equilibrium constant) of the
water-rock reaction stated in Eq. (1), and the new variables C,, and
Cr represent the ‘degree of disequilibrium’ of the silica in solution.

In their previous studies, Steefel and Lichtner (1998) and Graf
and Therrien (2007) reported the governing equations of this
transport problem using the new variables, but for a simplified
case without considering hydrodynamic dispersion of silica trans-
port in the fracture. When taking into account this dispersion term,
Cn and G satisfy the following governing equations, modified from
the formulation of Graf and Therrien (2007)
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subject to the boundary conditions

CGr(z,0)|; = 0 = Cro, )]
Cm(xvzvt)lx =00 = Ov (6)
Cm(xvzvt)|x =b= Cf(zv 0, (7)

and the initial conditions
Cf(th)lt:O :0' Cm(xvzvt)‘t‘:o :Ov (8)

where ¢ is the matrix porosity, ¢, is the quartz volume fraction
(¢pgz=1—¢), kS is the dissolution rate constant, Ag, is the specific
quartz surface area in the matrix, qu is the specific quartz surface
area in the fracture, D, = TDy, is the effective diffusion coefficient in
the matrix (7 is the tortuosity, and D,, is the diffusion coefficient
in water), Dy = ovy + Dy is the hydrodynamic dispersion coefficient
in the fracture (o; is the longitudinal dispersivity), and t is the
time.

Let A = Py kS Agz/PKeq and ),f:qquk(ﬂrA{JZ/Keq represent the
reaction rate constants in the rock matrix and in the fracture,
respectively, and D', = ¢Dp, /b, then the governing Eqs. (3) and (4)
become
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3. Analytical solutions
3.1. General transient solution

Applying the Laplace transformation to (9) yields

(s+ﬂ.m)ﬁzom%, an
where G, is the Laplace transformation of G, defined as

Cn(x,5) = /O. Ooexp(—st)Cm(x,t) dt. (12)
The only possible solution for (11) is of the form

Cn =c1exp[—(S/Dm)' *(x=D)], (S=5+/m), (13)

where the constant ¢; can be obtained by using the boundary

condition (7). Thus (13) becomes
Cin = Crexp[—dnS"2(x—b)], (14)
where

G; is the Laplace transformation of Cy, and dm = (1/Dm)"/?.

(15)
The gradient of G, at the interface x=b is
dGCn _ 12
szb__dms G. (16)
Applying the Laplace transformation to Eq. (10) yields
_ G dcy . dCn
SCf —Df iz +Vf dz +Afo —D'yy ax o =0. aa7)
Substituting (16) into (17), one has
d2G v dG 1 S1/2
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where A=1/(D'ndp), and di = Zs—/m.
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