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a b s t r a c t

Wavelet analysis is a well-known technique in the sciences to extract essential information from

measured signals. Based on the theory developed by previous studies on the Poisson kernel family, this

study presents an open source code, which allows for the determination of the depth of the source

responsible for the measured potential field. MWTmat, based on the Matlab platform, does not require

the wavelet tool box, is easy to use, and allows the user to select the analyzing wavelets and

parameters. The program offers a panel of 10 different wavelets based on the Poisson kernel family and

the choice between a fully manual and a semiautomatic mode for selection of lines of extrema. The

general equations for both horizontal and vertical derivative wavelets are presented in this study,

allowing the user to add new wavelets. Continuous wavelet analyses can be used to efficiently analyze

electrical, magnetic, and gravity signals; examples are presented here. The MWTmat code and the

multiscale wavelet tomography approach are an efficient method for investigating spatial and temporal

changes of sources generating potential field signals.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Since the 1980s, continuous wavelet transforms have become
an important tool for signal analyses. In the late 1990s, the
ground-breaking work of Moreau et al. (1997, 1999) enhanced
our understanding of the sources responsible for potential field
signals (i.e., gravity, magnetism, and electricity) by creating the
Poisson kernel family, which enables depth calculation of the
source of the measured signal. While analyses based on tradi-
tional wavelets (i.e., Morlet, Mexican hat) became more wide-
spread in the sciences (Grossmann and Morlet, 1984; Goupillaud
et al., 1984; Tchamitchian, 1989, and references therein), the
Poisson kernel family has had only limited use in geosciences for
potential field data. However, numerous studies have shown the
importance of the Poisson kernel family in both real and complex
continuous wavelet transforms (e.g., Saracco, 1994; Moreau et al.,
1997, 1999; Sailhac et al., 2000; Sailhac and Marquis, 2001; Fedi
and Quarta, 1998; Martelet et al., 2001; Saracco et al., 2004, 2007;
Boukerbout and Gibert, 2006; Cooper, 2006; Fedi, 2007; Mauri
et al., 2010). In this study, the continuous wavelet transform was
chosen over other techniques (e.g., wavenumber decomposition)
because of its capacity to simultaneously perform multiscale
analysis, depth determination, and homogeneous distribution of
the source without a priori source information.

This study presents an open source user friendly Matlab code,
MWTmat, for real and complex wavelet analyses on potential
fields, which allows the user to locate the sources of electrical
(self-potential), gravity, or magnetic signals. The code uses a
panel of 10 different wavelets based on the Poisson kernel family
that enables one to study the depth and structure coefficient of
the source of analyzed signal (Fig. 1). The depth calculation
method is based on a statistical approach, which allows one to
both limit artifact depth and reinforce the localization and the
homogeneous distribution of the source by cross-correlation of
the calculations using different wavelets. A brief overview of the
mathematical background of Poisson kernel family wavelets is
presented along with examples from both synthetic and field
studies of self-potential, magnetic, and gravity signals. Finally, the
multiscale wavelet tomography (MWT) approach is discussed
with its application to potential field source localization. In this
study, we define complex analyses to be the result of the depth
calculation on both the real and the imaginary values that result
from the wavelet analyses.

2. Continuous wavelet transform

The continuous wavelet transform (CWT), L(b,a)s, is the conver-
sion of any signal into a matrix made of a sum of scalar products
in Fourier space, which can be seen as how well the signal
matches the analyzing wavelet (Fig. 1). As both analyzed signal
and analyzing wavelet have their own signature (e.g., shape,
structure, and amplitude), the analyses of the first by the second
give a unique signature, which allows characterization of the
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structure of the analyzed signal (e.g., frequency content and
structure; Fig. 2). The mathematical expression of the wavelet
transform, L(b,a), for a signal, s, by a wavelet, g, can be described as
follows (Grossmann and Morlet, 1984; Moreau et al., 1997):

Lðb,aÞs ¼ a�g
Z

X
gnð½x-b�=aÞsðxÞdxg with q¼ nþgþa, ð1Þ

where the dimension order of the space, gAN, b is the translation
parameter, and a the dilation parameter; this allows the analyzing
wavelet to act as a band filter. The order of the derivative, nAN,
signal s has a homogeneous distribution order, aAN, and size of

the signal, xAN. X represents the number of elements making the
analyzed signal.

These studies apply the CWT within the frequency domain,
rather than within the spatial domain, for increased efficiency.
Within the frequency domain, the general equation of the
horizontal derivative of order n of the Poisson kernel family,
Hn(u) (Moreau et al., 1997, 1999; Saracco et al., 2004), is

HnðuÞ ¼ ð2puÞnexpð�2p9u9Þ, ð2Þ

with u the wavenumber of the spatial variable, x, in the frequency
domain and n being the order of the derivative, such as nAN.

Fig. 1. Poisson kernel wavelet family in Fourier space with their real and imaginary parts. V1 to V5 are the vertical derivatives of order from 1 to 5. H1 to H5 are the

horizontal derivatives of order from 1 to 5. Each wavelet is calculated over 1024 points on a frequency from 0 to 2.5 at a dilation a¼1. The negative part of the frequency

axis is the symmetrical construction to give the wavelet its full shape.
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