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A B S T R A C T

In this paper, we extend the service-speed competition game with boundedly rational customers considered in Li
et al. (2016) to the case with general reward function and multiple servers. The N servers make strategic decisions
on their service rates sequentially and repeatedly. Since the competing servers' payoff functions can only be
expressed by an implicit-function set, we propose a matrix method to derive the uniqueness of the equilibrium
service rates, and we establish the stability of the equilibrium through a tatônnement scheme. By conducting a
sensitivity analysis regarding the number of competing servers and the demand density, we find that the server
competition benefits the customers by improving their utilities as well as getting more customers to be served.
Furthermore, for a fixed demand density, the equilibrium service rate increases in the market size and converges
to a certain level when the market size is large enough.

1. Introduction

Customer-intensive service is the service requiring high level of
contact with customers. Such service is usually provided by experts, such
as doctors (for health care treatment), professors (for education), and
consultants (for legal or financial consulting). A number of customer-
intensive service examples have been provided in Anand et al. (2011).
For such service, customers usually regard the service in higher quality
for the longer processing time. According to their estimation on each
expert's service quality and the expected sojourn time, customers usually
have the opportunity to choose one from a number of experts. However,
as many empirical studies (see, e.g., Nisbett and Ross (1980), Kalai et al.
(1992)) suggest, customers may be affected by noisy terms such that they
cannot formulate accurate expectations on the service qualities. In this
case, customers are referred as “boundedly rational.” To formulate
boundedly rational customers' choice behavior, logit customer choice
models are usually adopted; see, e.g., Huang et al. (2013), Huang and
Chen (2015), Huang and Liu (2015) and Song and Zhao (2016).

Combing the two above-mentioned features, Li et al. (2016) investi-
gate a customer-intensive queueing model with two service providers,

where customers are assumed to be boundedly rational, and a customer's
reward from receiving the service is linear in the service rate. They derive
the two servers' equilibrium decision on the service rates, establish its
uniqueness and the stability, and also investigate the pricing issues.

As customer-intensive service is often rendered by experts whose
expertise is usually obtained by going through a lengthy and tough
training process, the number of service providers is often limited for such
service. For example, the number of doctors in Hong Kong is quite stable
and there exists a high entrance barrier in such a system. A research
question then arises: what is the impact of the number of the service
providers on the equilibrium outcome of the market (in our case, the
equilibrium service rate)? To answer this question, we shall extend Li
et al. (2016)’s work from the two-server case to a general N-server case,
where N � 2. The answer to this question can help the policy makers to
better regulate the number of service providers in such a system. Tomake
our conclusions more general, we also extend the linear reward function
in Li et al. (2016) to a general one. We consider a continuous and dy-
namic game among the N service providers. Specifically, the N service
providers play the game continuously in multiple periods, and in each
period they update their strategies sequentially to perceive a positive
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marginal payoff. In this circumstance, we will investigate the existence
and the stability of the servers' symmetric equilibrium, and we will also
investigate the sensitivity of the equilibrium and some system perfor-
mance measures, including customer utility and the total market share,
regarding the number of service providers N.

Regarding the equilibrium studies in the game between the product/
service provider(s) and customer(s), many scholars establish the exis-
tence, uniqueness, and stability analysis of the equilibrium; see, e.g.,
Hong et al. (2012) and Nagurney et al. (2014). It is common that in the
service competition setting, researchers usually consider explicit payoff
functions. The challenge for our generalized model is that each server's
payoff function cannot be shown explicitly. Actually, the payoff function
can only be expressed as the solution of an implicit-function set of N
servers' strategies. This causes great difficulty to investigate a tagged
server's best response decision. To tackle this challenge, we propose a
matrix method to derive servers' best responses and the equilibrium de-
cisions. To the best of our knowledge, there is no existing method in the
literature that can determine the equilibrium in the service competition
where players' payoff functions are given by a set of implicit functions.

In the following, we will introduce the model setting in Section 2. We
will analyze the best response and derive the symmetric equilibrium in
Section 3, and then establish the asymptotical stability of the equilibrium
through a tatônnement process in Section 4. In Section 5, we will
investigate the value of server competition through sensitivity analysis.
Section 6 concludes the paper. All the proofs are relegated to
the Appendix.

2. The model

We extend the quality-speed competition queueing model in Li et al.
(2016) to the case with general customer-intensive reward function and
N service providers, where N � 2. Specifically, we consider an oligopoly
market with N customer-intensive-service providers competing for
boundedly rational customers. The N servers and the customers behave
according to a two-stage game. In stage one, the servers set their service
rates; and in stage two, customers observe the service rates, and then
choose one server or leave.

We assume that each server's service time has an exponential distri-
bution. For each server i, where i ¼ 1;…;N, we let μi be the service rate,
which is server i's decision variable. Potential customers arrive according
to a Poisson process with rate Λ. Upon arrival, a customer decides
whether to join one of the servers or balk according to the utility value.
The utility value of joining a specific server depends on the reward from
receiving the service, price and congestion. If a customer decides to balk,
the utility is zero. If a customer decides to join server i, where
i ¼ 1;2;…;N, then reneging is not allowed. The reward from receiving
the service is denoted as R(μi), which is a general function depending on
the service rate μi. For customer-intensive service, customer service
reward decreases with service rate. Hence, a large service rate reduces
service facility congestion, but it also reduces the service value for cus-
tomers. The following assumption about the service reward function
R(μi) is made.

Assumption 1. Service reward function R(μi) is decreasing and concave in
service rate μi, i.e., R0ðμiÞ<0 and R00ðμiÞ � 0.

This assumption fits the characteristics of the customer-intensive
service. The inequality R0ðμiÞ<0 implies that a customer's service
reward decreases in the service rate. Regarding R00ðμiÞ � 0, it is easy to
check that under this condition, the reward function is increasing and
concave in the expected service time, i.e., 1∕μi. This makes sense: when
the average service time is short, the marginal effect of increasing one
unit service time is significant to customers; however, when the average
service time is relatively long, the marginal effect of increasing one unit
service time shall be less significant. Note that the linear reward function
considered in Li et al. (2016) satisfies R0ðμiÞ<0 and R00ðμiÞ ¼ 0, which is a
special case of our model.

Once joining server i, a customer needs to pay a price p for the service
and experience a certain period of congestion at a unit-time waiting cost
C. We assume that queues are unobservable, and thus the congestion is
estimated from the long-run average performance. Given that each
customer chooses to join server i with probability ϕi, which is also
referred to as server i's market share, the effective arrival rate to server i is
ϕiΛ. Customers arriving at server i can still be regarded as an M∕M∕1
queue. Thus, the expected sojourn time (including the service time) is
1∕(μi � ϕiΛ). Therefore, the expected utility for a customer joining the
queue at server i is the reward from receiving the service less the price
paid and the expected sojourn cost, as given as follows.

UiðμiÞ ¼ RðμiÞ � p� C
μi � ϕiΛ

: (1)

Note that an arriving customer has N þ 1 options: either balking or
joining server i, for i 2 f1;…;Ng. For simplicity, we denote balking as
join server i ¼ 0 and we set U0ð⋅Þ ¼ 0. Note that ϕ0 can be determined
when the probabilities of joining N servers are determined, i.e., ϕ0 ¼ 1�PN

j¼1ϕj: Next, we will focus on ϕi, where i ¼ 1; 2;…;N.
Recall that we consider boundedly rational customers. That is, cus-

tomers have limited cognitive ability in assessing service quality and
sojourn time. Therefore, like Huang et al. (2013) and Li et al. (2016), we
use the multinomial logit choice model to formulate boundedly rational
customers' choices, and we focus on the probability of a representative
customer choosing server i, i.e., ϕi, i ¼ 0;1; 2;…;N. From McKelvey and
Palfrey (1995), we have

ϕi ¼
eUiðμiÞ∕βPN

j¼0
eUjðμjÞ∕β

¼ eUiðμiÞ∕β

1þPN
j¼1

eUjðμjÞ∕β
; i ¼ 1; 2;…;N; (2)

where the parameter β > 0 measures the level of bounded rationality (see
Huang et al. (2013)). If β→0, customers are fully rational. Note that Li
et al. (2016) consider a queueing systemwith two servers, i.e., the special
case N ¼ 2, and they explain in details the logic on how to derive the
above probabilities from McKelvey and Palfrey (1995). Although Li et al.
(2016)’s analysis is based on the two-server case, it is straightforward to
extend their analysis to the N-server case. Therefore, we omit the
derivation.

From McKelvey and Palfrey (1995), there is a unique solution
ðϕ1;ϕ2;…;ϕNÞ satisfying the equation set (2). There are N equations in
set (2). Solving these N equations, we can obtain customers' joining
probabilities ϕi, i ¼ 1;2;…;N. To facilitate the analysis, we rewrite (2)
as follows.

β ln
ϕi

1�PN
j¼1

ϕj

¼ RðμiÞ � p� C
μi � ϕiΛ

; i ¼ 1; 2;⋯ ;N: (3)

3. Servers' best responses and the equilibrium

The equation set (3) gives customers's joining probabilities in implicit
forms, from which we will derive servers' best response functions, and
then the equilibrium strategy. For notational convenience, we denote
ϕ ¼ ðϕ1;…;ϕNÞ and μ ¼ ðμ1;…; μNÞ. To determine the Nash equilibrium
on the service rates, we consider a tagged server's decision, say, server k,
for any k ¼ 1; 2;…;N, and we assume other servers' decisions
μ1; μ2;…; μk�1; μkþ1;…; μN are given.

Follow the assumption in Anand et al. (2011) and Li et al. (2016), we
assume that any server's capacity cost is fixed and is not affected by the
service rate. Then, the tagged server k's best response μk maximizes the
corresponding market share ϕk. From the implicit function (3), ϕk de-
pends on μ. Since we assume that the other N � 1 servers' decisions are
given, we denote ϕk(μk) for simplicity. We first investigate the properties
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