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a b s t r a c t

For an assembly line, it is required to minimize the line's cycle time for processing a partially ordered set
of the assembly operations on a linearly ordered set of the workstations. The operation set is partitioned
into two subsets, manual and automated. The durations of the manual operations are variable and those
of the automated operations are fixed. We conduct a stability analysis for this problem. First, we derive a
sufficient and necessary condition for the optimal line balance to have an infinitely large stability radius.
Second, we derive formulas and an algorithm for calculating the stability radii for the optimal line
balances. Third, we report computational results for the stability analysis of the benchmark instances.
Finally, we outline managerial implications of the stability results for choosing most stable line balances,
which save their optimality in spite of the variations of the operation durations, and for identifying the
right time for the re-balancing of the assembly line.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The assembly line consists of m workstations, which are linked
by a conveyor belt (or another equipment) moving an in-process
product from one workstation to the next at a constant pace. The
set V of n assembly operations is fixed. Each workstation needs to
perform a specific subset of the operations from the set V within
the line's cycle-time. All the m workstations start simultaneously
to process their own operations. A partial order on the operation
set V arises due to technological and economical considerations,
which are represented by the precedence digraph = ( )G V A, with
the set A of arcs. A Simple Assembly Line Balancing Problem is to
find an optimal assembly line balance, i.e. an assignment of the
operations V to the m workstations such that the cycle-time is
minimal. The abbreviation SALBP-2 for denoting this problem has
been introduced by Baybars (1986). The problem SALBP-2 is NP-
hard (Gutjahr and Nemhauser, 1964; Wee and Manoj, 1982) since
the bin-packing problem is NP-hard and is a special case of the
problem SALBP-2, where in the bin-packing problem, the digraph

= ( )G V A, has no arcs, = ∅A .
Throughout this paper, it is assumed that the set V consists of

two specific subsets of the assembly operations. The non-empty

subset ⊆∼
V V includes all the manual operations and the subset

⧹∼
V V includes all the automated operations. The initial vector

= ( … )t t t t, , , n1 2 of the operation durations is known before solving
the problem SALBP-2. However, for the subset ⊆∼

V V of the manual
operations ∈ ∼

j V , each duration tj may vary due to different factors
such as the operator skill, motivation, learning effect, etc. In con-
trast to the manual operations, the duration ti of each automated
operation ∈ ⧹∼

i V V is fixed. We assume that = { … ˜}∼
V n1, 2, , and

⧹ = { ˜ + ˜ + … }∼
V V n n n1, 2, , , ≤ ˜ ≤n n1 . The vectors of the operation

durations are denoted as follows: = ( … )∼
˜t t t t, , , n1 2 ,

= ( … )˜ + ˜ +t t t t, , ,n n n1 2 , = ( ) = ( … )∼
t t t t t t, , , , n1 2 . Let a subset ≠ ∅Vk

br of
the set V be assigned to the workstation Sk, where ∈ { … }k m1, 2, , .
The assignment b :r = ⋃ ⋃…⋃V V V Vb b

m
b

1 2
r r r of the operations V to the

ordered workstations ( … )S S S, , , m1 2 , ⋂ = ∅V Vk
b

l
br u , ≤ < ≤k l m1 , is

called a line balance, if the following two conditions hold.

Condition 1. The assignment br does not violate the partial order
given on the set V by the precedence digraph = ( )G V A, , i.e. each
arc ( ) ∈i j A, implies that operation ∈i V is assigned to workstation
Sk and operation ∈j V is assigned to workstation Sl in a way such
that ≤ ≤ ≤k l m1 .

Condition 2. The assignment br uses all the m workstations, i.e.
the subset Vk

br is not empty for each workstation Sk,
∈ { … }k m1, 2, , .

Let B(G) denote the set of all assignments br satisfying
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Condition 1. The subset ( ) = { … }B G m b b b, , , , h0 1 of the set B(G)
consists of all line balances. The cycle-time ( )c b t,r for the line
balance br with the vector = ( )∼

t t t, of the operation durations is
determined as ( ) = ∑= ∈c b t t, maxr k

m
i V i1 k

br , where the sum

∑ = ( )∈ t t V:i V i k
b

k
br

r is a workstation time. The line balance b0 is op-

timal with the operation durations = ( )∼
t t t, if it achieves a mini-

mal cycle-time c as follows:

Condition 3. { }= ( ) = ( ) ∈ ( )c c b t c b t b B G m, min , : ,r r0 .

Note that Condition 2 allows us to restrict a set of the line
balances since the set ( )B G m, contains the optimal line balance
without fail. Let ( )B G m t, , denote a set of all the optimal line
balances, ( ) ⊆ ( )B G m t B G m, , , , with the vector = ( )∼

t t t, of the op-
eration durations. If operation i belongs to the set ⧹∼

V V , its duration
ti is fixed. Without loss of generality, we assume that >t 0i for each
automated operation ∈ ⧹∼

i V V since the automated operation with
the fixed zero duration has no influence on a solution to the
problem SALBP-2. The initial duration ti is a strictly positive real
number >t 0i for each operation ∈i V . A value of the duration

>t 0j of the manual operation ∈ ⊆∼
j V V can vary during the as-

sembly line lifespan. The varied duration ′t j may be even equal to
zero, which means that the manual operation j from the set

= ⋂ ( )
∼ ∼
V V V: 1k

b

k
br r

is processed by an additional operator in parallel with the pro-
cessing of other operations assigned to workstation Sk. Due to the
additional operator, the processing of the manual operation j does
not increase the workstation time, i.e.

∑ ∑′( ) = ′ = ′
( )∈ ∈ ⧹{ }

t V t t ,
2

k
b

i V

i

i V j

i
r

k
br

k
br

where ′t indicates the modified vector
′=( ′ ) = ( ′ ′ … ′ ) =( ′ ′ … ′ ′ ′ ′ )∼

˜ ˜ + ˜ + ˜ ˜ + ˜ +t t t t t t t t t t t t t t t, , , , , , ,..., : , , , , , ,...,n n n n n n n n1 2 1 2 1 2 1 2 ,
for which the workstation time ∑ ′∈ ti V i

k
br is calculated. The second

equality in (2) is valid because of holding equality ′ =t 0j . We
summarize the above in the following remark.

Remark 1. The initial duration ti is a strictly positive real number
for each operation ∈i V . A value of the duration >t 0j of the
manual operation ∈ ∼

j V can vary during the assembly line lifespan.
The varied duration ′t j may be equal to zero: ′ ≥t 0j .

The aim of this paper is to investigate the stability of the op-
timal line balance with respect to variations ′ ≠∼ ∼

t t of the operation
durations. The stability radius ρ ( )tb0

of the optimal line balance b0
is interpreted as a maximum of simultaneous and independent
variations ′∼

t of the durations ∼
t of operations

∼
V without violating

the optimality of the line balance b0, i.e.
∈ ( ) ∩ ( ′)b B G m t B G m t, , , ,0 . A formal definition of the stability ra-

dius is given in Section 2.1 along with a sufficient and necessary
condition for a zero stability radius. In Section 3, it is shown that
the stability radius may be infinitely large, ρ ( ) = ∞tb0

. Formulas for
calculating the stability radius ρ ( )tb0

for the line balance
∈ ( )b B G m t, ,0 are given in Section 4.1. The calculation of the sta-

bility radius is illustrated in Sections 2.2, 3.3 and 4.3. In Section 4.2,
it is shown on how to restrict a subset of the set ( )⧹{ }B G m b, 0 ,
which must be compared with the line balance ∈ ( )b B G m t, ,0 for
calculating the stability radius ρ ( )tb0

. An algorithm for calculating
the stability radius is presented in Section 5. Section 6 reports the
computational results for the stability analysis of the benchmark
instances from the old dataset and the recent one (Otto et al.,
2013) tested in Morrison et al. (2014), Otto and Otto (2014). In
Section 7, the managerial implications are spelled out on how to

use the stability results in the assembly industry. Concluding re-
marks and perspectives are discussed in Section 8.

2. Contributions of this work, previous results, and related
literature

The assembly lines are widely used in a mass production for
assembling components into final products. An effectively ba-
lanced assembly line allows a factory to increase its efficiency via
reducing a production cost. Since the production conditions may
change over time, the need of a re-balancing of the assembly line
may arise from time to time in order to serve customer demands
in the competitive market environment. The assembly re-balan-
cing is tedious procedures requiring significant costs and amounts
of a manpower (Chen et al., 2004; Chica et al., 2013; Gamberini
et al., 2006). It is a stability analysis that can help us to identify the
right time for the re-balancing. In spite of its practical importance,
the literature on the stability analysis of the assembly line balances
is scanty (Chica et al., 2013; Gurevsky et al., 2012, 2013; Sotskov
and Dolgui, 2001, Sotskov et al., 2005, Sotskov et al., 2006, 2015).
Next, we discuss a concept of the stability radius for the problem
SALBP-2 (Section 2.1). Section 2.3 contains a brief literature review
of other results and approaches for examining the robustness and
stability of the assembly line balances. Contributions of this work
are discussed in Section 2.4.

2.1. The stability radius of the optimal line balances for the problem
SALBP-2

We study the following question. How much can all or some
components of the vector ∼

t be simultaneously and independently
modified that the line balance b0, which is optimal for the initial
vector = ( )∼

t t t, , remains optimal for the modified vector ′ = ( ′ )∼
t t t,

of the operation durations? We study the stability radius of the
optimal line balance that is defined similarly to the stability radius
of the optimal schedule (Bräsel et al., 1996; Sotskov, 1991). If the
stability radius of the line balance ∈ ( )b B G m t, ,0 is strictly posi-
tive, then the line balance b0 remains optimal for all variations ′t j of

the operation durations ∈ ∼
t j V,j , within the ball with this radius

and center ∼
t . On the other hand, if the stability radius of the line

balance b0 is equal to zero, then b0 may no longer be optimal even
for infinitely small variations of the operation durations.

In contrast to a stochastic assembly line (Dong et al., 2014; Erel
and Sarin, 1998; Gamberini et al., 2006; Kahan et al., 2009), we do
not assume the given probability distribution for the random
duration tj of the manual operation ∈ ∼

j V . Note also that operation
durations ∈t i V,i , are assumed to be real numbers, in contrast to
the assumption used by Scholl (1999) and many other authors that
the operation durations are integer numbers. Let ˜Rn denote space
of all real ñ-vectors ( … )˜t t t, , , n1 2 with the following metric: The
distance ( ′)∼ ∼

d t t, between vector = ( … )∼
˜t t t t, , , n1 2 and vector

′ = ( ′ ′ … ′)∼
˜t t t t, , , n1 2 is defined as ( ′) = {| − ′| ∈ }∼ ∼ ∼

d t t t t i V, max :i i , where
| − ′|t ti i is the absolute value of the difference − ′t ti i . Let +

˜Rn denote
space of the non-negative real ñ-vectors, ⊆+

˜ ˜R Rn n.

Definition 1. The ball ( )∼
ρO t in space ˜Rn with the radius ρ ∈ +R1 and

the center ∈∼
+
˜t Rn is called a stability ball of the line balance

∈ ( )b B G m t, ,0 if for any modified vector ′ = ( ′ )∼
t t t, of the operation

durations with ′ ∈ ( )⋂∼ ∼
ρ +

˜t O t Rn, the line balance b0 remains optimal.
The maximal value ρ ( )tb0

of the radius ρ of the stability ball ( )∼
ρO t is

called a stability radius of the line balance b0.

Let ( )W b t,r denote the set of subsets
∼
Vk

br defined in (1),
∈ { … }k m1, 2, , , for which ( ) = ( )t V c b t,k

b
r

r . The following sufficient
and necessary condition for a zero value of the stability radius has
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