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a b s t r a c t

This study tests whether a simplified neural-network computational model can make routing decisions
in a logistics facility more efficiently than five 'intelligent' routing heuristics from the logistics literature.
The experiment uses a real-world simulation scenario based on the Hamburg Harbor Car Terminal, a
logistic site faced with managing approximately 46,500 car-routing decisions on a yearly basis. The
simulation environment has been built based on a data set provided by the Terminal operator to reflect a
real-world case. The simulation results show that the percent-improvement of the neural-net model's
performance is 48% better than that of the best routing heuristic tested in previous studies. To test the
applicability of the method with more complex logistic scenarios, we relaxed the sequence constraints
for routing in a subsequent simulations study. If logistic complexity in terms of more freedom in
decision-making is increased, the neural net model's percent-improvement performance of routing
decisions is around three times better than the best-performing heuristic.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Companies aim for short throughput times, high schedule
reliability, and low costs as three central objectives in logistics-
network management. These objectives contribute to the fulfill-
ment of customer demands, planning reliability, and financial
wellbeing (Yaged, 1973; Widrow et al., 1994; Nyhuis and Wiendahl,
2008; Michalewicz et al., 2010). Logistic routing options, however,
have become more and more complex as the number of products,
decision points, and global suppliers and customers have increased
(Warnecke, 1993; Tharumarajah et al., 1996; Choi et al., 2001; Choi
and Hong, 2002; Surana et al., 2005; Wycisk et al., 2008). Many
logistic scenarios, however, are too large and too dynamic so that

they cannot be mapped to simplistic de-complexified mathematical
expressions. Instead, we apply ‘rule-directed’ analytical meth-
odsdirecting the analytical process toward the best solution (Allen
and Helferich, 1990; Harrington et al., 1992).

From a complexity perspective, the complexity of decision-
making is measured in terms of degrees of freedom, i.e. the
number of possible alternatives or options to choose from (Cramer,
1993; Gell-Mann, 1994, 2002). This calls for the direct manage-
ment of decision alternatives, and especially, the reduction of the
degrees of freedom embedded in a decision to keep it manageable
– but without simplifying the decision processes so much such
that they do not reflect the actual problem any more. In a logistics
facility, inappropriate product-routing decisions caused by
unmanaged complexity can have a negative reinforcing effect and
cause more drastic delays in succeeding production stages.
Accordingly, fulfillment of customer demands becomes increas-
ingly problematic due to the increased risk of failing to achieve
short throughput times and high schedule reliability at lowest
possible cost (Gallager, 1977; Wang and Browning, 1991; Nyhuis
and Wiendahl, 2008; Windt et al., 2010a).

To better manage degrees-of-freedom, we use the simplified
neural network design introduced by LeBaron (2001b) in his
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computational model of a stock market. It has been successfully
applied in McKelvey et al.'s (2009) model for an agent-based
computational market design for ‘smart-parts’ logistics and
therefore is a promising basis for further developments in dealing
with increased degrees of freedom in logistics systems (Choi et al.,
2001; Surana et al., 2005; Pathak et al., 2007; Wycisk et al., 2008).
Moreover, there is a rising demand for new modeling approaches
since modeling becomes ever more difficult as degrees of freedom,
uncertainty, and time constraints increase (Chambers and Mount-
Campbell, 2002; Iassinovski et al., 2003; Michalewicz et al., 2010).
While some recent progress has been made in using simulations to
improve robustness (Caridi and Sianesi, 2000; Al-Mubarak et al.,
2003; Schikora and Godfrey, 2003; Köchel and Nieländer, 2005),
we see little significant evidence showing how the use of com-
putational models – whether cellular automata, genetic algo-
rithms, or neural network models (NNMs) – actually improves
managerial logistics decision-making in complex systems so as to
speed up the flow of goods (i.e. cars in our study) while also
lowering costs (Michalewicz et al. (2010), is an exception). Thus,
the objective of our article is to test whether a computational
model, specifically the NNM, can actually improve logistics man-
agement given increasing degrees of freedom.

We perform our test using a simulation model derived from a
real-world logistics scenario because we are interested in the
applicability of our approach by companies in the logistics sector.
We are aware of the limitations when selecting a single, specific
case for testing, such as loss of generality and comparability.
However, we think that the general advantages of NNMs have
been documented elsewhere, and we now want to analyze our
approach in a realistic scenario. By choosing a scenario that has
been used previously for the study of different control approaches
(Windt et al., 2010c), we at least partially overcome the issue of
limited comparability.

In Section 2 we describe our real-world case, the Hamburg
Harbor Car Terminal (hereinafter ‘Terminal’), a facility that
receives, stores, reworks, and dispatches approximately 46,500
cars per year. The coordination effort of all activities at the
Terminal represents an illustrative logistic site faced with mana-
ging moderate degrees of freedom. We describe our use of
LeBaron's (2001a, 2001b) NNM in Section 3. This includes
(1) describing his simplified NNM; (2) a ‘baseline test’ (Test 1) of
how well the simulated car-flow compares to the real-world car-
flow at the Terminal; (3) testing the NNM's management of rout-
ing heuristics (Tests 2 and 3); and (4) testing whether using the
NNM helps better manage car-flows under conditions of increased
complexity (Test 4).

In Section 4 we describe aspects of our method: (1) the Terminal
facilities; (2) the data used for our analyses; (3) the current method
used in the Terminal to manage car flows; (4) the five routing
heuristics applied by Windt et al. (2010c); (5) our NNM approach;
and finally (6) an alternative design of the simulated database so as
to assess the management performance of the NNM under condi-
tions of increased degrees of freedom. In Section 5 we describe the
results for the baseline test (Test 1), the five heuristics, the com-
parison between the baseline model, Windt et al.'s (2010c) heur-
istics, and the NNM in terms of throughput times (Tests 2 and 3),
and finally the comparison of all heuristics with increased degrees
of freedom (Test 4). We perform all tests with simulated data, based
on recorded data from the Terminal operator. A conclusion follows.

2. An example management problem: the Hamburg Car
Terminal

Fig. 1 shows an aerial photograph of the Terminal. We use this
Terminal as a scenario for testing whether a NNM offers any
advantage over human decision-making, given a complex situation
having some number of degrees of freedom. The car-flow process at
the Terminal is readily described and offers an example of changing
degrees of freedom. It has a flexible production sequence and a
large amount of available real-world data, presents various changes
and flexibilities in the car-flow process, and easily identifiable
logistics objects (cars) in a spatially and organizationally defined
space (Windt et al., 2010c).

For a better illustration of the processes and the car flow on the
Terminal, Fig. 2 depicts it schematically: On the upper left-hand
side the cars arrive at the Terminal. The majority of the incoming
cars reach the Terminal via vessel. They are unloaded from the ship
and stored in the Incoming Delivery parking area (I). Then, cars are
processed through all relevant treatment stations according to
their requirements before they reach the Outgoing Exit area (O).
Available treatment stations are (1) re-fueling cars (gasoline or
diesel); (2) de-waxing; (3) car-body repair; (4) car wash; (5) paint
shop; and (6) final inspection. Each car enters the Terminal with a
pre-defined list of orders, which can be divided into treatment and
parking orders, depending on the required treatments (if any) and
the duration of the stay before being sent on. If treatment is
required, between one and five treatment steps are assigned to
each car. The treatment steps have a specific sequence due to
processing constraints; e.g., re-fueling comes first; removal of
transport protection (de-waxing) needs to come before washing,

Fig. 1. Carport terminal in Hamburg harbor (Google maps, 2011_07_09).
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