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a b s t r a c t

This paper considers a two-product inventory model with limited storage capacity and constant demand
rates. We aim at finding an ordering policy that minimizes the cost per time unit. In the literature, several
solution methods have been developed for this problem, but these are limited to very restrictive classes
of policies. We consider a much more general class where the order quantity of one of the products is
allowed to vary. These policies are still cyclic and easy to implement. Closed-form expressions are de-
rived for determining the optimal order quantities. It is shown that savings of up to 25% are possible
compared to existing approaches.

& 2016 Elsevier B.V.. All rights reserved.

1. Introduction

The majority of inventory control literature is based on cost
minimization and ignores capacity constraints. In real life, such
constraints often do exist, either storage or production related. This
paper focuses on storage related capacity restrictions, which may
result from physical limitations or internal budget restrictions.

Many textbooks, including Hadley and Whitin (1963), suggest
coping with storage capacity limitations through partitioning of the
storage capacity. In this approach, each product gets its own share
of the storage capacity. This approach is mainly referred to as the
Lagrange multiplier approach, but the terms independent cycle, in-
dependent solutions and fixed storage approach are also used. The
advantage of this approach is that the negative effects of the ca-
pacity restriction can be spread evenly over the products. An im-
portant disadvantage is that the capacity is not used efficiently.
Indeed, for deterministic demand, the average capacity usage is
always 50%.

Another approach is to use the same cycle time for all products.
This approach is referred to as the fixed cycle, pure cycle, rotation
cycle or common cycle approach. In this approach, a common cycle
time is determined and all orders are phased within this cycle,
such that the storage capacity is used more efficiently. The main
problem is to determine this phasing, i.e. the sequencing of the
products, usually called the staggering of the products. Homer
(1966) was the first who solved this staggering problem to op-
timality. His result was rediscovered, independently, by Page and
Paul (1976), Zoller (1977), Hall (1988). The main advantage of this

approach is that capacity is used more efficiently. An important
disadvantage, however, is that forcing ordering cycles to become
equal can be very costly.

Combining the twomain approaches has also been suggested. Page
and Paul (1976) provide a method that clusters the products. All
products within a cluster have the same order interval, leading to an
efficient use of the capacity, while the order intervals vary across the
clusters. Anily (1991) provides another method that builds on the
same rationale but determines the clusters in a different way. She
shows that the performance of her clustering method does not exceed
some lower bound on the costs by a factor larger than 2 .

Besides combinations of the two main approaches, several
authors generalized the methods. Gallego et al. (1996) generalized
the fixed cycle approach to a powers-of-two policy. Order quan-
tities remain fixed. The authors provide heuristics that determine
ordering policies. An even more general approach is used by
Hartley and Thomas (1982). They consider a two-product model in
which they allow each product to be ordered several times per
cycle, though still in fixed amounts. They provide an optimal so-
lution procedure in a companion paper (Thomas and Hartley,
1983). Murthy et al. (2003) and Boctor (2010) consider the pro-
blem of offsetting the replenishment cycles by integer multiples of
some base period, and use the result that, if the integer multiples
of two items are not relatively prime, it is possible to offset their
cycles such that the peaks of their inventory cycles never coincide
over an infinite time horizon. Murthy et al. propose a heuristic for
this framework, which is improved by Boctor.

Several authors provide structural insights. Anily (1991) provides
a lower bound on the costs of inventory policies with constant or-
der quantities and Gallego et al. (1996) prove that this bound holds
even for varying quantities. Finally, Gallego et al. (1992) prove that
the problem of determining an optimal ordering policy subject to a
storage capacity restriction is strongly NP-complete.
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All the above discussed contributions consider policies with
constant order quantities. Some other contributions do focus on
varying order quantities. Hariga and Jackson (1995) formulate a
nonlinear program that minimizes holding and ordering costs by
selecting order quantities and the overall cycle length. They pro-
vide a heuristic solution procedure and conditions under which
fixed order quantities are optimal. However, throughout the entire
paper, they assume that the sequence of orders is given, which, in
fact, constitutes the most challenging part of the determination of
an optimal ordering policy.

Güder et al. (1995) also allow varying order quantities. They
provide a myopic procedure that determines order quantities one
by one, which in general results in a non-cyclic ordering policy.
The order quantities that the procedure selects are based on the
Economic Order Quantity as well as the available storage space. An
upper bound on the optimality gap is not provided.

In this paper, we present an exact approach for the two product
inventory model with a capacity constraint and varying order
quantities. We provide closed-form expressions for optimizing
order quantities and ordering moments for a very general class of
ordering policies. We further derive theoretical and numerical
results on the suboptimality of existing approaches, which turns
out to be considerable in many situations.

This paper proceeds as follows. Section 2 describes the in-
ventory system and introduces the concepts of simple and general
cycles. In Section 3, structural properties of the optimal simple
cycle policy are derived and used to determine the optimal timing
and quantity of orders. Section 4 compares the cost performance
of the optimal simple cycle policy to that of existing approaches.
Section 5 shortly discusses general cycle policies. We end in Sec-
tion 6 with a summary of the key findings and insights, and a
discussion of research opportunities.

2. System description

Consider a two product, infinite time horizon inventory system.
The products share a common storage resource with limited ca-
pacity. The products are numbered 1 and 2. Demand rates are
deterministic and denoted by d1 and d2. Demand is measured in
capacity units per time unit, i.e. as the rate with which capacity
decreases, to allow for normalization of the capacity to unity.
Subscripts refer to the product number. Lead times are constant
and backorders are not allowed.

The objective is minimizing costs per time unit by determining
ordering moments and quantities. This average cost per time unit is
denoted by C and based on a cost per order for each of the two
products, which are denoted by A1 and A2, respectively. We will
focus purely on the ordering costs as we consider situations where
ordering quantities are restricted by the limited available capacity
rather than the need to avoid excessive holding costs.

Our attention is restricted to cyclic solutions. A cyclic solution is
a solution in which ordering moments and quantities are de-
scribed for a finite time interval, the cycle, and the inventory levels
at the beginning and at the end of this cycle are equal. As a result,
the ordering policy within the cycle can be repeated infinitely
many times. The length of the cycle is denoted by T, which is a
decision variable that will vary for different configurations. Cycles
in which at least one of the products is ordered only once, which
implies that its order quantity does not vary, will be called simple
cycles. Cycles without any further restrictions will be referred to as
general cycles.

3. Simple cycles

Let the base product refer to the product that is ordered once

per cycle. If both products are ordered once, an arbitrary product
can be selected as the base product. We will present the analysis
for the case where product 1 serves as the basis, leading to the
optimal policy of that type, and than ‘copy’ the result for the other
case where product 2 is the base product.

The replenishment order of product 1 is referred to as the
product 1 order and its order quantity is denoted by Q1. Recall from
Section 1 that the capacity is normalized to one and hence ≤Q 11 .
The number of orders of product 2 during the cycle is denoted by
m, which is restricted to be integer. The product 2 orders are
numbered according to their position in the cycle, starting from
the product 1 order. Hence the i-th product 2 order after the
product 1 order will be named product 2 order i and its quantity
will be denoted by Q i2, , for = …i m1, , , where < ≤Q0 1i2, .

The above properties and notations lead to the following ex-
pression for the cycle time T of simple cycles:
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It is easy to see that, for fixed m, maximization of T implies
minimization of C. In turn, (1) shows that maximizing the order
quantities maximizes T. This observation suggests that (a) the
products should be ordered only when their stock is empty, and
(b) the order quantities fill all remaining capacity, i.e. order
quantities are of maximum size. In the next subsection, we show
that optimal solutions indeed always satisfy properties (a) and
(b) and we derive expressions for optimal order quantities by
applying these.

3.1. Deriving optimal order quantities

Let us assume that we have decided on the base product
(numbered 1) and the number,m, of orders per cycle for product 2.
In the next subsection, we will show how to select the base pro-
duct and the value of m optimally, in order to find the overall best
simple cycle policy.

The following theorem states that all orders must be of max-
imum size. We remark that Hariga and Jackson (1995) obtain the
same results under the objective of minimizing the storage capa-
city, but not under cost minimization as considered here.

Theorem 1. Under an optimal simple cycle policy, every order is of
maximum size, i.e. uses up all spare storage capacity when it arrives.

A proof by contradiction is provided in Appendix A.
The following corollary shows that next to being of maximum

size, orders should always arrive just in time. A formal proof is
provided in Appendix A, but the logic is as follows. An order that
arrives early (when the inventory level is still positive) can be
postponed, which leads to an alternative policy with an order of
non-maximum size. As the alternative policy cannot be optimal
(using Theorem 1), neither can the original policy. We remark that
Anily (1991) proves the same, but along different lines.

Corollary 1. Under an optimal policy, a product arrives exactly when
its inventory level reaches zero.

Now, we derive optimal order quantities as follows. Since the
product 1 order is of maximum size, by Theorem 1, and arrives
when the product 1 stock level is zero, by Corollary 1, the stock
level of product 2 at that time is ( − )Q1 1 . So, product 2 order 1 will
be placed − Q

d
1 1

2
time units later and, by Theorem 1, its quantity is

equal to the total demand over this period, i.e.
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