
A sequential iterative dual-filter for Lidar terrain modeling optimized
for complex forested environments
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a b s t r a c t

This paper introduces a sequential iterative dual-filter method for filtering Lidar point clouds acquired

over rough and forested terrain and computing a digital terrain model (DTM). The method belongs to

the family of virtual deforestation algorithms that iteratively detect and filter objects above-the ground

surface. The method uses both points and raster models to do so. The algorithm performance was first

tested over a complex badlands environment and compared to a reference model obtained using a

traditional TIN-Iterative approach. It was further tested on a benchmark site of the ISPRS (site 5)

representing mainly forests and slopes. Over badlands, the resulting DTM elevation RMSE was 0.14 m

over flat areas, and increased to 0.28 m under forested and rough terrain. The later value was 12.5%

lower than the one obtained with a TIN-Iterative approach. Over the ISPRS site, the TIN-Iterative model

provided better results for 3 out of the 4 sample sites. But the proposed algorithm, still worked fairly

well provided a total classification error of 5.52%, and is well ranked compared with other algorithms.

While the TIN-iterative approach might work better with low density, the proposed one is a good

alternative to process high density point cloud and compute DTMs suitable for modeling either

hydrodynamic or morphological processes under forest cover at a local scale.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Digital Terrain Models (DTMs) provide information about the
Earth’s surface and its related parameters such as slope, aspect or
curvature (Wilson, 2012). Considering the importance of land
surface characteristics in environmental processes, DTMs are
extensively used in a variety of fields including among others,
landform classification (Prima et al., 2006), monitoring of erosion
(Karátson et al., 2012), soil mapping (Dobos et al., 2001), flood
modeling (Tarekegn et al., 2010), habitat classification (Sesnie
et al., 2008), forest management (Véga and St-Onge, 2009) and
urban planning (Stabel and Fischer, 2001).

Data and methods for DTMs production have evolved rapidly
during the last two decades as a result of advancement in remote
sensing and field surveying technologies, as well as in computa-
tional methods (Wechsler, 2007; Wilson, 2012). The main data
sources for generating DTMs include traditional ground surveys,

extractions from existing topographic maps and remote sensing
in either a passive or an active mode (Nelson et al., 2009). While
passive remote sensing methods, mostly based on photogram-
metry, are limited to the computation of a Digital Surface Model
(DSM), which includes elevation of landscape features (i.e., trees
or buildings), active remote sensing such as Light Detection and
Ranging (Lidar) and radar allows penetration through forest
covers to sample the ground. Among methods based on remote
sensing data, those based on Lidar data are found to be the most
efficient to produce accurate DTMs from local to regional scales
(Hodgson et al., 2003) and national-level Lidar programs have
already been carried out to provide national high resolution DTMs
(2–5 m), for example in Netherlands, Belgium, Switzerland or
parts of the United States of America.

Basically, Lidar consists in measuring the round-trip time of
flight of short light pulses emitted towards an object (e.g., the
ground). The precise position of the target that interacted
with the light pulse is then deduced by combining this round-
trip time with both the position and the attitude of the sensor
recorded during the flight using, respectively a differential Global
Positioning System (dGPS) and an inertial measurement unit
(IMU) (Baltsavias, 1999a). Under best conditions, accuracies of
�0.15 m in altimetry and �1 m in planimetry can be reached
(Baltsavias, 1999b). However, several studies demonstrated that
the accuracies of a DTM depends on (1) the sensor and flight
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parameters, e.g., scanner device, flight altitude and speed (Ahokas
et al., 2003; Hopkinson, 2007), (2) the Earth’s surface character-
istics (i.e., topography, land cover) (Hodgson et al., 2005; Webster
et al., 2006) and (3) the methods used to produce the DTM, e.g.,
resolution, filtering and interpolation methods (Bater and Coops,
2009; Su and Bork, 2006; Wilson, 2012). The separation of Lidar
returns into ‘‘ground’’ and ‘‘non-ground’’ (i.e., infrastructure,
vegetation) is a critical step towards the generation of precise
DTM, especially in forested areas.

Several authors have proposed algorithms to tackle such
classification problems based on the analysis of raw data only
(i.e., points), the analysis of interpolated surfaces (i.e., TIN or
raster) derived from Lidar point clouds or on mixed approaches
using both raw and interpolated data (e.g., Liu, 2008; Meng et al.,
2010; Sithole and Vosselman, 2004; Zhang and Whitman, 2005;
also for description and comparison of algorithms). In a review
paper, Meng et al. (2010) classified ground filtering approaches
into six broad classes, namely segmentation/cluster, morphology,
interpolation, TIN, contour and directional scanning and pointed
out that current ground filters are mostly based on four ground
characteristics including: ‘‘lowest feature in a specific area,
ground slope threshold, ground surface elevation difference
threshold, and smoothness’’. In another comparison between
several filtering methods, Sithole and Vosselman (2004) indicated
that the surface-based filters tend to perform better than other
ones. In general, the overall performance of most generic algo-
rithms was found to decrease in forested as well as in rough
terrains (Bretar et al., 2009; Meng et al., 2010; Zhang and
Whitman, 2005). Decrease in DEM accuracy with terrain slope
and vegetation cover was mainly attributed to Lidar system
measurement, including both elevation errors resulting from the
Lidar measurement system and the filtering process (Adams and
Chandler, 2002; Hodgson and Bresnahan, 2004; Hodgson et al.,
2003; Su and Bork, 2006). Also it has been found that vegetation
cover and vegetation type have a great impact on DTM
accuracy (Hodgson et al., 2003; Su and Bork, 2006; Zhang and
Whitman, 2005). As an example, Hodgson et al. (2005) found
highest root mean squared errors (RMSE) in the presence of either
tall canopy vegetation (24.3–27.6 cm) or scrub/shrub (36.1 cm).
Such phenomenon can be first explained by a failure of filtering
algorithm in removing low vegetation, especially within slopes
(Zhang and Whitman, 2005). In this regard, James et al. (2007)
pointed out the limitations of Lidar DTMs for describing gully
morphology under forest canopies due to erroneously removed
bare earth points along rims. Along with classification errors,
the lower ground point densities obtained under vegetation
cover can also partly explain increased error in DTM with
vegetation density (Hodgson and Bresnahan, 2004). And it has
been suggested to use high Lidar point densities to improve
DTM quality and correctly model surface morphology in complex
environment (Hodgson and Bresnahan, 2004; James et al., 2007).

Concerning the filtering step, the overall decrease in performance
of the algorithms within topographically complex and forested
environment is also likely to originate from the fact that most of
the generic algorithms are based on the assumption that the bare
Earth’s surface is less sloping and has a more even surface, i.e., is
characterized in a local neighborhood by lower frequency patterns,
than the DSM surface including aboveground objects (Liu, 2008;
Meng et al., 2010; Sithole and Vosselman, 2004). This assumption is
no more valid in complex and forested environments where the
DTM morphology might present similarities with the DSM’s one and
can sharply vary from one part to another part of the studied area.
Consequently, optimizing the algorithm parameters to process large
and topographically complex areas still remains difficult while
maintaining good accuracies in the various surface conditions
(Kobler et al., 2007; Zhang and Whitman, 2005).

In this paper, we propose a sequential iterative dual-filtering
method to address the problem of Lidar filtering over rough
and forested surfaces. The originality of the approach is to rely
on assumptions regarding the effect of remaining non-ground
structures (i.e., over-ground returns classified as ground or.
commission errors) on the local characteristics of the modeled
surface instead of assumptions on expected ground morphology
only. While most of the current approaches aim at identifying and
densifying unambiguous ground points on the basis of rules
related to geometrical and/or morphological properties of terrain
(Zhang et al., 2003), the proposed algorithm aims to iteratively
detect and remove non-ground points in the philosophy of virtual
deforestation methods (Haugerud and Harding, 2001). We first
tested this algorithm over a vegetated catchment located in
badlands with very complex morphology (Rey, 2003). The perfor-
mance of the algorithm was assessed in reference to the wide-
spread TIN iterative algorithm. A benchmark evaluation was further
realized using ISPRS test data (Sithole and Vosselman, 2003)
in order to compare this algorithm with nine other ones (Meng
et al., 2010).

2. Principle of the proposed Lidar filtering method

The proposed algorithm is based on two driving assumptions.
First, that part of the non-ground Lidar returns can be separated
from those from the ground ones based on the existence of a
sharp difference in height at the boundary between ground and
above-ground objects. Second, after removal of the aforemen-
tioned returns, the filtering of non-ground returns remaining in a
close neighborhood of the ground surface can be addressed by
using the local characteristics of the surface as suggested in
Sithole and Vosselman (2004). Based on these assumptions the
following four-step algorithm is defined: (1) extraction of the
lowest points by surface unit, (2) iterative removal of Lidar
returns that are easily identifiable as belonging to the above-
ground surface using a difference in height threshold, (3) iterative
removal of the remnant above the ground Lidar returns located in
a close neighborhood of the ground surface using neighborhood
statistics, and (4) densification of the resulting ground point cloud
and computation of the final DTM (see workflow in Fig. 1). Details
of the procedure:

Step 1 Extraction of lowest points (Fig. 1, Step 1).
First, the original Lidar Point Cloud (LPC) is restricted to
points with the minimum elevation in a given pixel or
unit area. These minima are tagged as ‘‘low points’’ (LP).

Step 2 Iterative removal of points that are distinctly above the
ground surface (Fig. 1, Step 2).
A Digital Elevation Model (DEM) is generated by raster-
izing the LPs selected in a given pixel and supplemented
missing values with natural neighbor interpolated surface
of neighboring LPs.
Following the generation of DEM, ‘‘Salient pixels’’, those
pixels having an elevation higher by a (m) than at least
one of their immediate surrounding pixels (i.e., 8-connec-
tivity), are first identified. a (m) is a threshold fixed by
the user according to the landscape structure. The result-
ing salient pixels or group of pixels form a ‘‘mask’’ that
describes structures characterizing either above-the-
ground objects (i.e., trees, buildings) or sloping areas
like parts of natural terrain slopes. This procedure may
extract only outlines of objects creating holes in the mask
(doughnuts), rather than filling the whole of it. Such
omissions may especially occur inside objects with small
slopes like flat roof tops or rounded tree crowns. On the
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