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a b s t r a c t

The design and planning of more sustainable supply chains should take into account several impacts for
a proper assessment of the environmental performance of the logistic activities. Unfortunately,
minimizing several environmental objectives simultaneously leads to hard optimization problems. This
paper presents a rigorous computational framework for solving complex multi-objective optimization
(MOO) problems encountered in the optimization of logistic tasks under economic and environmental
indicators. The key ingredient of our method is the use of an objective reduction algorithm that allows
identifying redundant objectives that can be omitted while still preserving the problem structure to the
extent possible. The advantages of our method are illustrated by means of two case studies that address
the multi-objective optimization of supply chains that produce bioethanol and hydrogen for vehicle use.

& 2014 Published by Elsevier B.V.

1. Introduction

Over the past decade, the minimization of the environmental
impact of supply chains (SCs) has received much attention in both
academia and industry. Such interest has been mainly motivated
by the growing consumer demand for “greener” products along
with tighter environmental protection laws.

Despite the efforts made so far in this area, there is still
nowadays a lack of agreement concerning the impacts to be
minimized to achieve better environmental performance. Ideally,
the optimization model should minimize simultaneously a set of
impacts in several damage categories of concern for decision-
makers. However, given the large number of metrics that currently
exists, this approach leads to complex formulations that are hard
to solve in short CPU times. Furthermore, there is the added

difficulty of visualizing and analyzing the solutions produced in a
high-dimensional space. In this paper, we present a method that
reduces the complexity of multi-objective optimization models by
identifying redundant objectives that can be omitted while still
preserving the problem structure to the maximum extent possible.
Our approach allows dealing with complex models that assist in
the design and planning of more sustainable processes.

The paper is organized as follows. We first review the literature
on this topic, with emphasis on the use of multi-objective
optimization in the design and planning of more sustainable
supply chains. The problem under study is formally defined in
the next section. The modeling framework and the solution
procedure follow. Some numerical results are then presented,
while the conclusions of the work are drawn in the last section
of the paper.

2. Literature review

The incorporation of environmental aspects in supply chain
management (SCM) has led to the concept of green supply chain
management (GrSCM), which aims to integrate environmental
decisions into elementary SC phases including product design,
material selection, manufacturing processes, delivery of final pro-
ducts to customers, and end-of-life management of products after
their useful life (Hervani et al., 2005; Srivastava, 2007). In his
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extensive review, Srivastava (2007) recognized two main approaches
in the area of GrSCM: empirical studies and mathematical modeling
techniques. Among mathematical modeling tools, multi-objective
optimization (MOO) has gained wider interest in the research
community, as it offers the possibility of balancing economic and
environmental concerns in a systematic manner.

The overwhelming majority of MOO models applied in SCM
minimize the amount of emitted greenhouse gases (GHGs), mainly
because carbon emissions are regulated by the European Union
Emission Trading Scheme (EU ETS), the world's largest emissions
trading mechanism, whose main purpose is to mitigate climate change.

Hugo et al. (2005) presented a bi-objective model for the
optimal design of hydrogen SCs that maximizes the net present
value (NPV) and minimizes the GHG emissions. Zamboni et al.
(2011) proposed a bi-objective model for optimizing biofuel net-
works that minimizes the amount of GHG. Giarola et al. (2011,
2012) proposed bi-objective models for the design of bioethanol
SCs in Italy that minimize the emitted CO2. More recently, Akgul
et al. (2012) adopted a similar approach for optimizing bioethanol
SCs in the UK.

Some authors have claimed that optimizing GHG emissions as
unique criterion can lead to solutions where this metric is reduced
at the expense of increasing other negative environmental effects
(Scharlemann and Laurance, 2008; Vries et al., 2010; Cooper and
Sehlke, 2012). A possible manner to avoid this consists of optimiz-
ing aggregated environmental metrics obtained by attaching
weights to single impact indicators (see Huppes and van Oers,
2011). Particularly, aggregated metrics based on life cycle assess-
ment (LCA) principles (Curran, 2006) have gained wider interest in
the recent past, as they allow assessing the environmental impact

considering all the stages in the life cycle of the process. The Eco-
indicator 99 is one of these LCA metrics (Goedkoop and
Spriensma, 1999) that has been widely used in SCM. Guillén-
Gosálbez and Grossmann (2009) used the Eco-indicator 99 in the
design of petrochemical SCs and hydrogen SCs for vehicle use
(Guillén-Gosálbez et al., 2010). The same metric was employed by
Duque et al. (2010) and Pinto-Varela et al. (2011) for optimizing
industrial networks in Portugal. Neto et al. (2008) applied another
aggregated metric that weights seven single impacts for optimiz-
ing paper logistic networks, while Bojarski et al. (2009) applied
the IMPACT2002þ , which is quantified following LCA principles,
in the optimization of SCs.

The computation of aggregated metrics involves two main steps:
normalization and weighting. The aim of normalization is to refer the
original impact values to a common basis before being aggregated into
a single metric. Weighting procedures range different indicators
according to some targets. They are typically defined by a panel of
experts that reflect the views of the society or a group of stakeholders.
The weakness of the aggregation procedure is that it uses fixed
normalization and weighting parameters that may not represent the
decision-makers' interests. Moreover, when used in an MOO frame-
work, aggregated metrics may change the dominance structure of the
problem in a manner such that some solutions may be left out of the
analysis (Brockhoff and Zitzler, 2010).

The use of aggregated indicators in environmental MOO pro-
blems is a common practice in environmental engineering that
was originally motivated by the numerical difficulties associated
with the optimization of a large number of objectives simulta-
neously (Ehrgott, 2000). An alternative approach that avoids the
use of aggregated metrics consists of optimizing approximated

Notation

Indices

e ε-iterations
i objectives
n inequality constraints
n0 equality constraints
p Pareto solutions

Sets

Ei ε-values for objective fi
F0 original set of objectives
F reduced set of objectives
S set of Pareto solutions
S″ set of Pareto solutions of bi-criteria and single

criterion models
S0 set of unique Pareto solutions of bi-criteria and single

criterion models
SðbiÞ set of Pareto solutions of bi-criteria models
SðexÞ set of extreme solutions
SðfinalÞ

0
final set of Pareto solutions

SðfinalÞ
0

final set of unique Pareto solutions
SðnormÞ0 set of normalized elements of S0

SðredÞ
0

set of Pareto solutions of reduced space model

Parameters

δ upper limit for δ-error
f i maximum value of objective fi

f i minimum value of objective fi
f ðnormÞ
i

normalized value of objective fi
J number of Pareto solutions
K number of objectives in the original space
L number of ε-values
Lmax maximum number of ε-values
N number of inequality constraints
N0 number of equality constraints
si solution at which objective fi attains its

minimum value
si solution at which objective fi attains its

maximum value
YPp;p0 ;i binary parameter that takes the value of 1 if solution

sp is better than solution sp0 in objective function fi and
0 otherwise

Variables

ZDp;p0 binary variable (1 if solution sp0 dominates solution sp
in the reduced Pareto space and 0 otherwise)

ZOi binary variable (1 if objective fi is removed from F0 and
0 otherwise)

ZODi;p;p0 auxiliary binary variable
δp;p0 ;i difference between the value of objective fi in solu-

tions sp and sp0
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