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a b s t r a c t

This paper presents a distributed and dynamic programming framework to the mining production rate
target tracking of multiple metal mines under financial uncertainty. A single mine's target tracking is
stated as a stochastic optimization problem and the solution is obtained by solving the dynamic program
which gives the optimal production rate schedule of each mine as a Markovian feedback control on the
price process. The global solution is distributed on multiple mines by a policy iteration method, and this
iterative method is shown to provide the unique equilibrium among Markovian strategies. Numerical
results confirm the efficacy of the proposed global method when compared to individual optimization of
mining rate target tracking.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

A mining complex is composed of multiple mines, material
types, and several processing streams including stockpiles. A
global optimization framework for a mining complex should take
into account the dynamics and mutual constraints of the overall
complex. In this paper, we investigate mining production rate
target tracking of multiple metal mines in a mining complex over
the life of operations from which life of mine schedules are
generated. It is important to maintain a steady mining rate during
the life of mine since moving mining equipment and relocating
personnel is costly. However, in changing market dynamics, the
trade-off between following the planned mining rate and cost of
rate change forms a dynamic stochastic optimization problem,
which is termed mining rate tracking problem.

Three fundamental properties affect mining rate planning in
a mining complex: metal uncertainty, financial uncertainty and
inter-dependence of mines in a mining complex. First, since the
metal content of each mining block is not known, the associated
financial value of a block is stochastic. Traditionally, to overcome
this stochasticity, scenario methodologies are applied (Ramazan
and Dimitrakopoulos, 2013; Boland et al., 2008; Meagher et al.,
2009), the cost function is assumed to be linear and stochastic

mixed integer programming (SIP) based solutions are adopted.
Since the number of mining blocks is usually very large, heuristic
approaches have been applied (Lamghari and Dimitrakopoulos,
2012). An alternative is to develop sequential models to form a
complete plan, as per Lerchs and Grossmann (1965) and Whittle
(1988). We take a similar approach here and extend this sequential
approach to multiple mines in a single mine complex with the
novelty that (i) it is dynamic programming based and (ii) it takes
global dependences into account in an iterative manner.

Secondly, the price of the metal is a stochastic process. Since
mining rate tracking is a horizon optimization problem and the
price is observed progressively on the horizon, this introduces
feedback controls to the tracking problem. Lastly, there are mutual
constraints that have to be addressed by all mines such as stock-
piles and processing destinations that are common parts of a
mining complex. Therefore, a global optimization framework is
needed.

Even though financial uncertainty has been addressed less than
geological uncertainty in the mining literature (Godoy, 2003), there
has been progress in the recent years. Simulation-based approaches
have been presented by Abdel Sabour and Dimitrakopoulos (2011),
and a methodology to quantify the effect of price uncertainty within
reserve estimates has been given by Evatt et al. (2012). A graph-
based parametric maximum flow algorithm for developing ultimate
pit limit and phase design under metal and financial uncertainty
has been presented by Asad and Dimitrakopoulos (2013).

The problem discussed herein may be seen as a sub-problem
under the larger problem named production scheduling of a
mining complex under financial uncertainty. Ideally, this problem
should be solved globally in a single stochastic mixed integer
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program. However, the computational complexity is insurmoun-
table. In the work presented here, a distributed approach rather
than a centralized framework is taken. The problem is divided
into four phases, the necessary and salient dependences between
the phases are established, and then solved iteratively. Phase 1 is
the mining pit limit calculation of each mine and phase 2 is the
calculation of individual mining production rate target functions
which includes identifying independent and dependent con-
straints. In phase 3, mining rate trackings are solved globally for
all mines considering financial uncertainty. Phase 4 includes the
calculation of individual production schedules considering metal
uncertainty. Note that metal uncertainties are independent of each
other and independent of the financial uncertainty, which allows
parallel computation in phase 4. It should be stressed that without
this iterative approach it would not be possible to employ
parallelization in the scheduling phase, and the resulting single
stochastic mixed integer program would have an enormous
number of variables and constraints, which necessarily would
lead to intractability. This paper proposes a solution to the phase
3 described above. The proposed framework provides a significant
reduction in computation of decision making in an environment
where every decision is dependent on volatile prices. Once the
extraction rates are calculated the production scheduling can be
done individually for each mine taking into account each mine's
individual geological uncertainties, which are in principle inde-
pendent of each other.

In this paper, an optimal control framework is developed to
address financial uncertainty and global optimization in mining
production rate tracking for multiple mines in a mining complex.
Note that, in previous work, receding control has been applied to mine
production scheduling by Goodwin et al. (2006) and Rojas et al. (2007)
in a deterministic framework. Herein a stochastic optimization frame-
work is presented where individual target tracking on the horizon is
shown to be in the class of Markovian feedback controls, where the
price process is progressively measured, but only the instantaneous
price is employed to calculate the mining rate. The stochastic proper-
ties of the price process are handled in a dynamic program. Since the
individual dynamic optimizations of the mines are coupled a dis-
tributed policy iteration method is provided, and it is shown that
successive iterations converge to a unique fixed point which repre-
sents the unique Nash equilibrium.

The assumptions below are made in the present work.

A1: The existence of a target extraction rate function is assumed
for each mine parameterized by the price process and the extrac-
tion rates of other mines, denoted as Ψ kðpt ; xtÞ; tZ0 where pt ; tZ0
is the price process and xt ; tZ0 denotes the average extraction
rate of all mines. The target extraction rate function is strictly
increasing in price and strictly decreasing in the average extraction
rate of all mines. Several other parameters can be injected into this
function such as the overall estimated value of the mining
complex, the relative complexity of the transportation for each
mine, etc. The key idea here is to group dependences into a single
dynamics function where dynamic optimization can be applied.
The determination of the structure of the target extraction rate
function precisely requires a sensitivity analysis with respect to
the selected parameters and is beyond the scope of the paper.

The mines are not independent; for instance, if all the mines
increase their extraction rates, even though mines respect their
individual constraints, the global constraints could be violated or
stockpile capacities that are commonly used could be exceeded.
It is to be noted that the results of the paper hold in the case when
A1 is generalized to a more general functional where (a) the
parameter set is finite and (b) Markovian property is not violated.
A1 has been established for notational brevity.

A2: It is assumed that the metal price follows a stochastic
differential equation (Schwartz, 1997) which is subject to Brow-
nian increments, nowhere differentiable, Markovian and given by

dpt ¼ f pðpt ;μÞdtþσðptÞdwt ; ð1Þ

where f pðp;μÞ is the drift and σðpÞ is the volatility, whereas w is a
standard Wiener process (Brownian motion).

The time evolution of the probability density function ζðt; ptÞ of
the metal price that is modeled through (1) is given by the Fokker–
Planck equation which in physics provides the evolution of the
probability density function of the velocity of a particle given by

∂tζðt; ptÞþ∂p½f pðpt ;μÞζðt;ptÞ��
1
2
∂2ppσðptÞ2ζðt; ptÞ ¼ 0; ð2Þ

where a closed form solution may exist depending on the proper-
ties of f p and σ. Since the time varying distribution of the metal
price is explicitly stated through a partial differential
equation (PDE), stochastic mining rate target tracking can be
simply formulated as a stochastic mixed integer program with
recourse. However, despite its simple model, the solution would
be hit by the curse of dimensionality in the uncountable and
unbounded state space, and it would be computationally intract-
able to provide Monte Carlo solutions even if the distribution (2) is
very roughly sampled. In this paper, optimal mining rate tracking
is solved via a dynamic program formulation solvable in closed
form; therefore the approach offers a significant complexity
advantage.

Classical optimization and control theory studies problems
with a single decision maker and offers tools and algorithms that
can guarantee a certain performance and robustness. Decentrali-
zation of a global system immediately poses new problems to be
solved such as those raised by the well-known Witsenhausen
counterexample (Witsenhausen, 1968), or the stability issues
which arise for systems subject to communication constraints
(Nair and Evans, 2004). Viewed from this perspective, attention is
needed for the utilization of parallelization. There are cases in
which an equilibrium may not exist where no unilateral deviations
are profitable. Even if an equilibrium exists, iterations of the
distributed sub-problems might not converge to this equilibrium.
In this paper it is shown that for the distributed mining rate target
tracking, there exists a unique equilibrium, where no unilateral
deviation is profitable, and a policy iteration method is shown to
converge to this equilibrium.

The remainder of this paper is organized as follows. In Section 2
the mathematical model is introduced, where each individual
optimization problem is formulated as a mining rate target
tracking problem. In Section 2.1, the dynamic program is solved
and the closed form solutions that generate the optimal mining
rate of each mine are presented. In Section 3 the distributed
algorithm is given and the convergence of the algorithm toward
the equilibrium is given, where profitable unilateral deviations do
not exist. In Section 4, the maximum likelihood method to
calibrate the stochastic price process parameters is briefly dis-
cussed and simulation results are provided. Conclusions follow.

2. Optimal target control

The mathematical model for the mining rate tracking optimi-
zation is introduced in this section. Each mine tries to track the
planned extraction trajectory in order to fulfill its planned sche-
dule. The optimization is computed on a horizon through a cost
function where both deviations from the target and change in the
rate of mining are penalized. Moreover, these plans are dependent
on the stochastic process pt ; tZ0; the price process.
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