
Online bounded-batch scheduling to minimize total weighted
completion time on parallel machines$

Ran Ma a,b, Long Wan c, Lijun Wei c, Jinjiang Yuan a,n

a School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
b School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China
c School of Information Technology, Jiangxi University of Finance and Economics, Nanchang 330013, China

a r t i c l e i n f o

Article history:
Received 5 June 2013
Accepted 16 May 2014
Available online 27 May 2014

Keywords:
Scheduling
Batch processing
Online algorithms
Performance guarantee

a b s t r a c t

We consider the online bounded-batch scheduling to minimize total weighted completion time on
parallel machines. In the problem, a set of n independent jobs arriving online over time has to be
scheduled on m given machines, where the information of each job including its processing time and
weight is not known in advance. Each machine can process up to b (bon) jobs simultaneously as a batch.
The processing time of a batch is the time required for processing the longest job in the batch. We
present 4ð1þϵÞ�competitive online algorithms on uniform machines when m is fixed and on identical
machines when m is a part of input, respectively. Experimentation results show that the algorithm for
identical machines (which covers the setting of uniform machines) is efficient.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

The online scheduling problem studied in this paper can be
stated as follows. There are n jobs J1; J2;…; Jn arriving over time to
be assigned into batches and scheduled without preemption on m
parallel machines to minimize total weighted completion time.
The information of each job Jj, including its processing time pj and
its weight wj, will be known at its release date rj. In a batch
processing system, b jobs can be processed simultaneously as a
batch, where b is called the batch capacity. If bon then the batch
capacity b is bounded and unbounded otherwise. In this paper we
only take the bounded capacity into consideration. A batch B is
called full if jBj ¼ b and unfull if jBjrb�1. The processing time of a
batch is defined to be the maximum processing time of all jobs in
the batch, and the weight of a batch is the sum of the weights of all
jobs in the batch. Let p(B) and W(B) denote the processing time
and weight of a batch B, respectively. Then we have pðBÞ ¼maxfpj :
JjABg and WðBÞ ¼∑Jj ABwj. The goal is to find a schedule to
minimize the total weighted completion time.

In this paper, we deal with the above online scheduling
problems on m uniform machines when m is a fixed
number and m identical machines when m is a part of input,

respectively. Then the problems we consider can be written in the
three-field notation of Graham et al. (1979) as Qmjonline;
rj;p� batch; bonj∑wjCj and Pjonline ; rj;p� batch; b onj∑wjCj.

For the off-line version, research for the bounded-batch scheduling
to minimize the total (weighted) completion time is concentrated on
the setting of single machine. For problem 1jp� batch; bonj∑Cj,
Chandru et al. (1993) presented heuristics and branch-and-bound
algorithms. Chandru (1993) presented an Oðk3bkþ1Þ�time optimal
algorithm, where k is the number of processing times of the jobs.
Hochbaum and Landy (1997) presented an optimal algorithm with
time complexity Oðk23kÞ. Brucker et al. (1998) presented an
Oðnbðb�1ÞÞ�time optimal algorithm and an Oðb2k22kÞ�time optimal
algorithm. For problem 1jp� batch; bonj∑wjCj, Uzsoy and Yang
(1997) presented heuristics and branch-and-bound algorithms. For
problem Pmjp� batch;bonj∑wjCj, Li et al. (2006) presented a
polynomial-time approximation scheme.

However, for the online version, the lack of knowledge of the
future does not generally guarantee the optimality of the schedule
generated by an online algorithm. To obtain a good online algorithm, a
class of techniques is to convert an off-line scheduling algorithm into
an online algorithm for the scheduling problem considered. To the
best of our knowledge, such techniques are earliest used by Blum et al.
(1994), Shmoys et al. (1995), and Hall et al. (1997).

For minimizing the total weighted completion time for an
online scheduling, a general online framework, called Greedy-
Interval, was presented by Hall et al. (1997). Greedy-Interval uses
as a subroutine a dual ρ�approximation off-line algorithm for the
following problem MSWP to obtain a 4ρ�competitive online
algorithm.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijpe

Int. J. Production Economics

http://dx.doi.org/10.1016/j.ijpe.2014.05.012
0925-5273/& 2014 Elsevier B.V. All rights reserved.

☆Foundation item: Supported by NSFC (11271338), NSFC (11171313), and NSFC
(11301528).

n Corresponding author. Tel.: þ86 13838147625.
E-mail addresses: sungirlmr@hpu.edu.cn (R. Ma), cocu3328@163.com (L. Wan),

lijunwei522@163.com (L. Wei), yuanjj@zzu.edu.cn (J. Yuan).

Int. J. Production Economics 156 (2014) 31–38

www.sciencedirect.com/science/journal/09255273
www.elsevier.com/locate/ijpe
http://dx.doi.org/10.1016/j.ijpe.2014.05.012
http://dx.doi.org/10.1016/j.ijpe.2014.05.012
http://dx.doi.org/10.1016/j.ijpe.2014.05.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2014.05.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2014.05.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2014.05.012&domain=pdf
mailto:sungirlmr@hpu.edu.cn
mailto:cocu3328@163.com
mailto:lijunwei522@163.com
mailto:yuanjj@zzu.edu.cn
http://dx.doi.org/10.1016/j.ijpe.2014.05.012

The maximum scheduled weight problem (MSWP): Given a
certain scheduling environment, a deadline D, a set of jobs
available at time 0, and a weight for each job, construct a feasible
schedule that maximizes the total weight of jobs completed by D.

A dual ρ�approximation algorithm for MSWP is a polynomial-
time algorithm that always delivers a schedule of length at most
ρD and whose total weight is at least the optimal weight for the
deadline D. Then the algorithm Greedy-Interval can be stated as
follows.

Greedy-Interval: Partition the time horizon of possible comple-
tion time at geometrically increasing points. Let τi ¼ 2i, i¼ 0;1;…,
be in the time horizon. Greedy-Interval constructs the schedule
iteratively. At iteration i¼ 1;2;…, we wait until time τi�1, and
then focus on the set of jobs that have been released by this time
but not yet scheduled. These jobs are scheduled to run from time
ρτi�1 to ρτi by invoking the dual ρ�approximation (off-line)
algorithm with deadline D¼ τi�1. □

The following result, which reveals the power of Greedy-
Interval, was established in Hall et al. (1997).

Lemma 1.1. Any dual ρ�approximation off-line algorithm for MSWP
is efficiently converted in the aforementioned way by Greedy-Interval
into a 4ρ�competitive online algorithm for minimizing the total
weighted completion time. □

The above general online framework has received much atten-
tion in the recent literature. It is generalized widely to obtain
better online algorithms not only for scheduling problems but also
for other combinatorial optimization problems. For instance,
Chakrabarti et al. (1996) extended the online techniques to a
number of different scheduling models and even extended the
technique to yield bicriteria scheduling algorithms within a small
factor of both optimal schedule length and average weighted
completion time. The deterministic strategy for L-OlDarp in the
online traveling repairman problem together with the proof of
performance presented by Krumke () was also an adaption of the
algorithm greedy-interval. Prabhakaran (2001) proposed the algo-
rithms for scheduling multimedia information delivery over wire-
less channels by taking advantage of the dual ρ�approximation
algorithm for MSWP. In addition, Garg et al. (2007) gave online
algorithms for minimizing the weighted completion time in order
scheduling model from the above online technique.

We now pay attention to the following two papers most related
to our research.

By using the general online framework Greedy-Interval, Chen
et al. (2004) provided a 4ð1þϵÞ�competitive online algorithm for
problem 1jonline; rj; p� batch; bonj∑wjCj. They first reduced the
problem MSWP to a certain problem on interval graphs. Then they
provided a dynamic programming algorithm with the time com-
plexity Oðn4DÞ. With the pseudo-polynomial algorithm, they
derived for MSWP a dual FPTAS by applying the rounding and
scaling techniques.

By using the general online framework Greedy-Interval again,
Zhang and Bai (2007) gave a 4ð2�1=bþϵÞ�competitive algorithm
for problem Pmjonline; rj; p� batch; bonj∑wjCj by a technique
named Duplicating. In their algorithm, they first duplicated b
identical machines for each machine. Then they determined the
jobs to be scheduled on the mb machines by the algorithm for
MSWP of problem Pmjonline; rjj∑wjCj (Hall et al. (1997)). Finally
they put all jobs scheduled on each b machines into batches
according to FBLPT (Full Batch Largest Processing Time) rule and
processed each resulting batch on the corresponding machine
which yielded the b machines.

In this paper, motivated by the general online framework
Greedy-Interval, we present a dual FPTAS for the corresponding
MSWP of problem Qmjonline; rj;p� batch; bonj∑wjCj and a

dual PTAS for the corresponding MSWP of problem Pjonline;
rj; p� batch; bonj∑wjCj. From Lemma 1.1, both of the online
algorithms are 4ð1þϵÞ�competitive, which improve the result
provided by Zhang and Bai (2007) from the worst-case prospec-
tive. As a consequence, the dual FPTAS for the corresponding
MSWP for m uniform machines also yields a dual FPTAS
for the corresponding MSWP of problem 1jonline; rj; p� batch;
bonj∑wjCj. Moreover, we improve the time complexity provided
in Chen et al. (2004) by providing a direct dynamic programming
algorithm with the time complexity Oðn2 log nþn2DÞ for the
corresponding MSWP. From Lemma 1.1, this leads to a more
efficient (in the aspect of time complexity) ð4þϵÞ�competitive
online algorithm for problem 1jonline; rj; p� batch; bonj∑wjCj.

This paper is organized as follows. In Section 2, a dual FPTAS is
presented for the corresponding MSWP of problem Qmjonline;
rj; p� batch; bonj∑wjCj. In Section 3, a dual PTAS is presented
for the corresponding MSWP of problem Pjonline; rj; p� batch;
bonj∑wjCj. In Section 4, we provide a brief computational study
of the algorithms presented, under randomly chosen instances.
Conclusions are presented in Section 5.

2. A dual FPTAS for MSWP(Qm-batch)

Let MSWP(Qm-batch) denote the problem MSWP restricted on
m uniform batch processing machines with a batch capacity bon
when m is fixed. For convenience, we renumber the n jobs such
that p1rp2r⋯rpn. For each batch B, we use l(B) and u(B) to
denote the minimum and maximum job indices in batch B,
respectively. Then lðBÞ ¼minfj : JjABg and uðBÞ ¼maxfj : JjABg.
The processing time of batch B is given by pðBÞ ¼ puðBÞ and the
weight of batch B is given by WðBÞ ¼∑jABwj.

For each pair of positive integers l and u with 1r lrurn, we
can form a batch Bl;u by including up to b jobs of the maximum
weights among all jobs of indices between l and u. Let Wl;u denote
the total weight of jobs in the batch Bl;u. Note that the total
number of such batches Bl;u, 1r lrurn, is Oðn2Þ. We claim that
the batches Bl;u and the values Wl;u, 1r lrurn, can be deter-
mined in Oðn2 log nÞ time.

To prove the claim, we consider a given l with 1r lrn. The
first batch Bl;l ¼ flg and the first value Wl;l ¼wl can be determined
in Oð1Þ, and so, in Oð log nÞ time. Then we generate the other
batches Bl;u and the other values Wl;u, lþ1rurn, one by one. For
each generated batch Bl;u, we maintain a linked list Ll;u in which
the jobs in Bl;u are sorted in the nondecreasing order of their
weights. The first list Ll;l is trivially determined in Oð log nÞ time.
In each iteration, when Bl;k, Wl;k and Ll;k have been determined for
some kwith lrkrn�1, we insert job Jkþ1 to the list Ll;k to form a
list L0

l;k in which the jobs keep the nondecreasing order of their
weights. Since jBl;kjrbon, the insertion can be implemented in
Oðlog nÞ time by the binary search. Let Ji be the first job in list L0

l;k.
If jBl;kjob, we just set Bl;kþ1 ¼ Bl;k [fJkþ1g, Wl;kþ1 ¼Wl;kþwkþ1

and Ll;kþ1 ¼L0
l;k. If jBl;kj ¼ b, we then set Bl;kþ1 ¼ ðBl;k [fJkþ1gÞ\fJig

and Wl;kþ1 ¼Wl;kþwkþ1�wi, and the next list Ll;kþ1 can be
obtained from L0

l;k by deleting the first job Ji. Consequently,
Bl;kþ1, Wl;kþ1 and Ll;kþ1 can be obtained from Bl;k, Wl;k and Ll;k

in Oðlog nÞ time. The claim follows.
We now study a more general problem, denoted by

Q ðn;D1;D2;…;DmÞ, in which the jobs scheduled on machine i have
a common deadline DiZ0. This means that we have the following
Condition A for a feasible schedule.

Condition A. The sum of the real processing times of the batches
scheduled on each machine i must be upper bounded by Di.

Assume that the speed of machine i is given by si40 for
1r irm. When a batch B with the original processing time p(B) is

R. Ma et al. / Int. J. Production Economics 156 (2014) 31–3832

Download	English	Version:

https://daneshyari.com/en/article/5080004

Download	Persian	Version:

https://daneshyari.com/article/5080004

Daneshyari.com

https://daneshyari.com/en/article/5080004
https://daneshyari.com/article/5080004
https://daneshyari.com/

