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a b s t r a c t

Traditionally, lot sizing decisions in inventory management trade-off the cost of placing orders against
the cost of holding inventory. However, when these lot sizes are to be produced in a finite capacity
production/inventory system, the lot size has an important impact on the lead times, which in turn
determine inventory levels (and costs). In this paper we study the lot sizing decision in a production/
inventory setting, where lead times are determined by a queueing model that is linked endogenously to
the orders placed by the inventory model. Assuming a continuous review (s, S) inventory policy, we
develop a procedure to obtain the distribution of lead times and the distribution of inventory levels,
when lead times are endogenously determined by the inventory model. This procedure allows to
determine the optimal inventory parameters within the class of (s, S) policies that minimize the
expected ordering and inventory related costs over time. We numerically show that ignoring the
endogeneity of lead times may lead to inappropriate lot sizing decisions and significantly higher costs.
This cost discrepancy is very outspoken if the lot size based on the economic order quantity deviates
significantly from desirable production lot sizes. In these cases, the endogenous treatment of lead times
is of particular importance.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

A century ago, Ford Whitman Harris presented the Economic
Order Quantity (EOQ) model as a simple, yet powerful model to
determine how many parts to make (or order) at once, so as to
balance the fixed costs per lot against the inventory carrying costs
(Harris, 1913). Although various assumptions are underlying the
model, the EOQ model proves to be a robust solution to many lot
sizing decisions in practice. To apply the EOQ model, it is common
practice to additionally define a reorder point based on the
distribution of demand during lead time, so that a fixed order
quantity Q (equal to the EOQ) is ordered as soon as the inventory
position reaches the reorder point r.

Arrow et al. (1951) introduced a slightly modified version of
this model, i.e. the (s, S) inventory policy, in which a reorder point
s and an order-up-to level S are established: no order is placed
until inventories fall to s or below, whereupon an order is placed
to restore the inventory position to the level S. In other words,
orders are placed with a lot size which is always larger than or

equal to the value of S�s (in many heuristics, the batching
parameter S�s is set equal to the EOQ), but in this case the order
size is stochastic: the more the inventory position falls below s
(which happens, for instance, in case of a large demand size), the
more the order quantity will exceed S�s; we call this the random
overshoot. Several authors showed, assuming constant lead times,
that an (s, S) policy is optimal when a fixed order cost is present
(Scarf, 1960; Iglehart, 1963; Veinott, 1966; Porteus, 1971). If orders
do not cross, the (s, S) optimality result under constant lead times
carries over to stochastic, non-crossing lead times (Muharremoglu
and Tsitsiklis, 2008). To our knowledge, there is no analytical work
that shows the optimality of the (s, S) policy in finite capacity
production/inventory systems. The (s, S) inventory policy is still of
main importance today to inventory theory and ordering policies
and is incorporated in business software of many companies all
over the world (Caplin and Leahy, 2010).

The traditional (s, S) inventory literature treats lead times
exogenously with respect to the inventory policy. This means that
the lot sizing decision is made in a local inventory environment,
where production lead times are assumed to be exogenous and
independent with respect to the lot size. Treating lead times as
exogenous to the inventory model is justified when both produc-
tion and inventory are decoupled through a large inventory at the
production; if the owner of the production system guarantees a
fixed delivery date; or if transportation lead times are much longer
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than production lead times (Benjaafar et al., 2005). In these
environments, the inventory policy does not have a (significant)
impact on lead times. For some recent examples of inventory
systems with exogenous lead times, we refer to Glock (2012a) and
Hoque (2013).

However, these assumptions do not hold in integrated produc-
tion/inventory systems. In a production environment, there is a
relationship between lot sizes and the lead times. Multiple small
batches may cause an increase in traffic intensity at the production
if there is a setup time per batch, resulting in lengthy queues and
long waiting times (Karmarkar, 1987). At the other extreme, if lot
sizes are very large, lead times approach an increasing function of
the lot size. In such a system we need to take the dependency
between lot sizes and lead times into account to determine the
optimal lot size and reorder point parameters.

In this paper, we examine the lot sizing decision in a produc-
tion/inventory environment, in which the order quantities gener-
ated by the inventory model determine the production lot sizes,
and thus the (production) lead times. These lead times in turn
affect the parameters of the inventory policy. We show that the
inclusion of endogenous lead times (as opposed to assuming lead
times are exogenous to the inventory model) leads to different lot
sizing decisions. Ignoring the endogeneity in lead times may lead
to incorrect lot sizing decisions and, as a result, to higher costs.

2. Model assumptions and notations

We consider a continuous time, single item production/inven-
tory system. We assume that customer demand arrives according
to a compound Poisson process with a general and finite distribu-
tion of discrete demand sizes per customer. Inventory is managed
using a continuous review (s, S) policy to exploit the economies of
scale when ordering. A finite-capacity production system produces
these orders on a make-to-order basis. Under a continuous review
(s, S) policy, the order arrival process at the production queue
consists of a combination of batch order quantities, which are
stochastic (due to the stochastic overshoot) and also the time
between orders is stochastic, where the order quantities and time
between orders can be correlated.

One processor sequentially produces individual units on a first-
come-first-served basis. We assume that each order requires a
phase-type distributed setup time and the time to produce each
single unit of the order is also random and phase-type distributed.
We make use of the phase-type distribution, since its Markovian
nature allows for an exact queueing analysis and the class of
phase-type distributions is dense in the set of all positive-valued
distributions, meaning any positive-valued distribution can be
approximated arbitrarily close by a phase-type distribution
(Latouche and Ramaswami, 1999).

When the entire order is produced, it replenishes the inventory
(there is no delivery until the ordered batch is completed). The
time between the moment an order is placed (by the (s, S) policy)
and the moment it is received in inventory (after setup and
production time) is the replenishment lead time. This replenish-
ment lead time thus consists of a waiting time in queue (if the
system is busy), a setup time and a production time. In other
words, this lead time is stochastic and depends on the way orders
are placed and its production process.

We restrict our search to the class of (s, S) policies and we
optimize the values of the reorder point s and the lot sizing
decision ðS�sÞ that minimize the expected total cost. We assume a
fixed cost per order placed and a holding (resp. shortage) cost per
unit in inventory (resp. short) per unit of time. To minimize the
total cost in this production/inventory setting, we take into
account the impact of the lot size (S�s) on the lead times, as this

will influence the inventory levels and thus the corresponding
inventory costs. We derive the lead time distribution for a given
set of (s, S) parameters in Section 4. The analysis of the steady state
distribution of inventory levels (at a random point in time), given a
set of (s, S) parameters and assuming endogenous lead times, is
discussed in Section 5. In Section 6, we numerically illustrate the
performance of our integrated approach, and compare it with the
traditional local inventory approach, where lead times are
assumed to be exogenous to the inventory parameters.

Throughout this paper we will adopt the following notations:

� The compound Poisson demand has arrival rate λ, and demand
sizes are independent and identically distributed and follow a
general discrete distribution with maximum demand size m. We
use di to denote the probability of a demand of size i, with di¼0 for
i4m.

� Inventory is controlled by a continuous review (s, S) inventory
policy (consequently orders can be placed at any time); in case of a
stockout, unmet demand is backlogged. Order quantities vary
between S�s and S�sþm�1, depending on the observed custo-
mer demand prior to the moment the order was placed (which
determines the overshoot).

� The probability distribution of inventory levels is defined by the
probability of having S� i units on hand, which we denote as ϕi

with iAf0;1;…g.
� The time needed to produce a single unit has an order np phase-

type representation with parameters ðγp;UpÞ, and the setup time
has an order ns phase-type representation ðγs;UsÞ. Hence, the
density function of the production and setup time is given by
γp expðUpxÞð�Upenp Þ and γs expðUsxÞð�Usens Þ, respectively, where
en is a column vector of size n with all its entries equal to one.

� The workload of production (without setup times) equals

ρwork ¼ λðγpð�UpÞ�1enp Þ ∑
m

i ¼ 1
idi; ð1Þ

with λ the arrival rate of customers, ∑m
i ¼ 1idi the expected demand

size per customer, and ðγpð�UpÞ�1enp Þ the expected time to
produce one unit. Based on ρwork, we define the overall load/
utilization as

ρ¼ ρworkþðγsð�UsÞ�1ens Þ=μot ; ð2Þ
with ðγsð�UsÞ�1ens Þ the average setup time and μot the average
time between two orders placed.

� We define qk;n as the joint probability that the current order in
production is of size k and n demand arrivals (with random
demand size) have occurred since the order in production (of size
k) was placed. This joint probability is needed to calculate the
inventory levels.

� A fixed ordering cost K, a penalty cost p per unit backlog per time
unit and a holding cost h per unit in inventory per time unit are
taken into account. The variable procurement cost will not be
included in the cost function, as it will not influence the policy
parameters (eventually all demand is met). The cost function for a
given set of (s, S) parameters is then defined as

Cðs; SÞ ¼ K
μot

þh½Φ�þ þp½Φ�� : ð3Þ

The first term (K=μot) refers to the expected total ordering cost in a
time unit, which is expressed by means of the renewal reward
theorem, with μot the average time between orders (which we will
define in Section 4.2). The expected holding and penalty cost per
time unit are based on ½Φ�þ , which refers to the expected number
of units on hand per time unit, and ½Φ�� , which denotes the
expected number of units backlogged per time unit (see Section 5).
It is worth noting that the above definition of the cost function
Cðs; SÞ coincides with the cost function obtained by directly
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