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a b s t r a c t

In this work the uncapacitated dynamic lot-sizing problem is considered. Demands are deterministic and
production costs consist of convex costs that arise from economic production functions plus set-up costs.
We formulate the problem as a mixed integer, non-linear programming problem and obtain structural
results which are used to construct a forward dynamic-programming algorithm that obtains the optimal
solution in polynomial time. For positive setup costs, the generic approaches are found to be
prohibitively time-consuming; therefore we focus on approximate solution methods. The forward
DP algorithm is modified via the conjunctive use of three rules for solution generation. Additionally,
we propose six heuristics. Two of these are single-stepSilver–Meal and EOQ heuristics for the classical
lot-sizing problem. The third is a variant of the Wagner–Whitin algorithm. The remaining three
heuristics are two-step hybrids that improve on the initial solutions of the first three by exploiting the
structural properties of optimal production subplans. The proposed algorithms are evaluated by an
extensive numerical study. The two-step Wagner–Whitin algorithm turns out to be the best heuristic.

& 2014 Published by Elsevier B.V.

1. Introduction

In this paper, we consider the problem of dynamic lot-sizing in
the presence of polynomial-type convex production functions and
non-zero setup costs. The dynamic lot-sizing problem is defined as
the determination of the production plan that minimizes the total
(fixed setup, holding and variable production) costs incurred over
the planning horizon for a single, storable item facing determinis-
tic demands. The so-called classical dynamic lot-sizing problem
was first analyzed by Wagner and Whitin (1958). They established
that, in an optimal plan with positive fixed setup costs and linear
production and holding costs, production is done in a period only
if its net demand (actual demand less inventories) is positive, and
a period's demand is satisfied entirely by production in a single
period (that is, integrality of demand is preserved.) For linear
production costs, extensions include Zangwill (1966), Blackburn
and Kunreuther (1974), Lundin and Morton (1975), Federgruen
and Tzur (1991), Wagelmans et al. (1992), Aggarwal and Park
(1993), Azaron et al. (2009), Ganas and Papachristos (2005),
Okhrin and Richter (2011) and Toy and Berk (2013). The funda-
mental properties of the optimal plans for linear costs hold for

piecewise linear and concave cost structures, as well. For details on
such results, we refer the reader to the reviews in Brahimi et al.
(2006), Karimi et al. (2003), Jans and Degraeve (2007), Buschkühl
et al. (2010) and Jans and Degraeve (2008). There is also a parallel
stream of research that focuses on developing lot sizing heuristics
based on simple stopping rules. (See Vollmann et al. (1997),
Simpson (2001), and Jeunet and Jonard (2000) for a full list and
review.) The advantages of such approximate solution methodol-
ogies are their ease-of-use, smoother production schedules and
providing more intuition to practitioners about the fundamental
trade-offs. Hence, the available commercial ERP software (e.g., SAP)
offers the well-known heuristics for the classical lot sizing pro-
blem as options for decision-makers in theirmanufacturing mod-
ules. These include the Silver–Meal and economic order quantity
(EOQ) based heuristics among others (Silver and Meal, 1973;
Harris, 1913; Erlenkotter, 1989).

Most of the existing works on the dynamic lot-sizing problem
deal with linear and/or concave production functions rather than
convex functions. For convex cost functions and zero setup costs, a
parametric algorithm was developed by Veinott (1964) for the
problem, which can be solved by an incremental approach satisfy-
ing each unit of demand as cheaply as possible. The algorithm has
a computational complexity ofOðTD1;T Þ where T is the problem
horizon length and D1;T stands for the total demand over the
problem horizon. Works by Meyer (1977) and Khachian (1979)
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render this problem solvable in strictly polynomial time. Our work
differs from the existing literature in our main assumption about
the structure of production costs. Specifically, we consider variable

production costs in period t of the polynomial form ∑m
n ¼ 1w

n
t q

rnt
t

where qt denotes the quantity produced in the period, wt
n and rt

n

are positive constants and m is the number of resources. The
assumed non-linearity aims to capture the externalities in produc-
tion activities that are encountered in a number of industrial
settings as briefly discussed below:

(i) Productive assets require maintenance and repair activities
over their lifetimes and almost all production processes
generate undesirable wastes, which must be disposed of
and/or whose negative ecological impact must be mitigated.
As additional resources are required or legal penalty rates
become progressive, the costs associated with such auxiliary
activities exhibit a convex behavior. To the best of our knowl-
edge, the only attempt to incorporate such non-linear costs in
production planning is performed by Heck and Schmidt
(2010) who proposed a heuristic which is a variant of the
incremental solution approach in Veinott (1964).

(ii) Non-linear production functions also arise from production
activities that use a number of substitutable resources such as
materials, labor, machinery, capital, energy, etc. One of the
most common production functions is the Cobb–Douglas
production function, which was introduced at a macroeco-
nomic level for the US manufacturing industries for the period
1899–1922 but has been widely applied to individual produc-
tion processes at the microeconomic level, as well. For
example, Shadbegian and Gray (2005) use the Cobb–Douglas
production function to model production processes in the
paper, steel and oil industries, Hatirli et al. (2006) to model
agricultural production, and Kogan and Tapiero (2009) to
model logistics/supply chain operations. The Cobb–Douglas
production function assumes that multiple (m) resources are
needed for output, Q and they may be substituted to exploit
the marginal cost advantages. In general, it has the form

Q ¼ A∏m
i ¼ 1xðiÞαðiÞ where A is the technology level for the

production process, x(i) denotes the amount of resource i
used and αðiÞ40 is the resource elasticity. Assuming that
resource i has a unit cost of p(i), the total cost for output Q is
given by wQr where w¼ ð1=rÞA� r∏m

i ¼ 1ðpðiÞ=αðiÞÞαðiÞr and

1=r¼∑m
i ¼ 1α

i (Heathfield and Wibe, 1987). The total elasticity
parameter 1=r may be greater than (smaller than) or equal to
1 depending on whether there is diminishing (increasing)
returns to resources, resulting in convex (concave) variable
production costs. Despite its widespread occurrence, the
impact of the Cobb–Douglas production function on dynamic
lot-sizing problems has not been studied.

(iii) Another commonly used economic production function is the
Leontieff function introduced by Leontieff (1947). Its main
difference from the Cobb–Douglas function is that it assumes
that resources are not substitutable but complementary. The
applications include Haldi and Whitcomb (1967) for refining
of petroleum and primary metals, Ozaki (1976) for large-scale
assembly production, Lau and Tamura (1972) for ethylene
production, and Nakamura (1990) for iron and steel produc-
tion. The Leontieff production function has the form
Q ¼minifxðiÞαðiÞg for a given set of resources where x(i )
denotes the amount of resource i used and αðiÞ40 is the
resource elasticity. Assuming that resource i has a unit cost of

p(i), the total cost for output Q is given by ∑m
i ¼ 1w

iQ1=αðiÞ

where wi ¼ pðiÞ. Typically, it is assumed that αðiÞr1 so that

the variable cost of production is convex in output. Similarly,
there are no studies on the dynamic lot-sizing problem in the
presence of Leontieff production functions.

The general structure for variable production costs assumed
above subsumes the above three classes of costs of production
externalities. For m41, each term wi

tq
rit
t corresponds either

directly to the cost of using resource i in a complementary fashion
in order to produce qt units in period t through a Leontieff-type
production function or to the individual polynomial terms of the
cost of efforts to mitigate the ecological impact. For m¼1, the only
term w1

t q
r1t
t corresponds to the effective cost of using all resources

to produce qt units in period t through a Cobb–Douglas type
production function. To avoid confusion, we remind the reader
that the above discussion of multiple resources is to motivate the
form of the variable production cost functions. Once we have
them, we focus on the production plan of the single item.

In this paper, we formulate the dynamic lot-sizing problem first
as a mixed integer non-linear programming (MINLP) problem and
obtain fundamental properties of the optimal solution. In parti-
cular, we characterize the optimal solution structure for the case of
zero setup costs and establish the property that shows how the
optimal solution for a T-period problem can be updated to give the
solution for a (Tþ1)-period problem. This property leads us later
to develop a forward dynamic programming (DP) formulation
which obtains the optimal production plan in OðT22T Þ run time in
general. For positive setup costs, we also show that the same
optimal production plan structure (consisting of G-class subplans)
is retained when periods are pre-specified in which production is
done. Based on this property, we modify the forward DP algorithm
by means of three simple set-construction rules so that OðT2Þ
computational complexity is achieved. This constitutes our bench-
mark algorithm for large sized problems. In addition, we propose
six new heuristics for the lot sizing problem at hand. Heuristics H1
and H2 are based on stopping rules and variants of the Silver–Meal
and EOQ based heuristics for the classical lot sizing problem.
Heuristic H3 is a variant of the Wagner–Whitin solution that
employs the forward DP algorithm while imposing demand
integrality on the production quantities. The first three heuristics
are single step heuristics. The remaining three heuristics, which
we call the G-heuristics, are two-step hybrids that use the set of
production periods of the solutions obtained by the first three
heuristics and improve them via G-class production subplans.

An extensive numerical study establishes that a forward DP
algorithm wherein production periods within generations are
selected via simple rules provides a reasonably fast and efficient
solution methodology. Among the proposed heuristics, the
Wagner–Whitin heuristic (H3) performs best among the single
step heuristics and the hybrid G-heuristics exploiting the optimal
production plan structure outperform the single step heuristics
significantly. The best heuristic among all those proposed turns
out to be the hybrid one that improves on the Wagner–Whitin
solution, namely, heuristic H6. These are followed in performance
by the single step heuristic H2, which is based on the EOQ model,
and the G-heuristic H5, which improves on that. The sensitivity
analysis on the optimal solutions (obtained by the benchmark DP
algorithm) reveals two fundamental tendencies which are in
accordance with intuition. Higher production cost non-linearities
and lower average unit production costs force production to be
spread over a larger number of periods to exploit the marginal cost
benefits. Thus, unlike the classical lot-sizing model with the non-
speculative cost structure, production functions generate a ten-
dency to produce in earlier periods when setup costs are zero. This
results in production smoothing – production decisions in more
periods with smaller quantities. Positive setup costs, on the other
hand, introduce the batching tendency, as expected; for larger
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