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a b s t r a c t

In this paper we extend a stochastic discrete optimization approach so as to tackle the lot-sizing problem
in manufacturing systems. In practice, with the surrogate methodology, the lot sizes are continuously
adjusted on-line by the gradient-based approach. The lot sizing determines the number of parts batched
together for production. We utilize the queueing approach that evidences the existence of a convex
relationship between batch size and waiting time (including processing). Large lot sizes will cause long
lead times (the batching effect), as the lot size gets smaller the lead time will decrease but once a
minimal lot size is reached a further reduction of the lot size will cause high traffic intensities resulting in
longer lead times (the saturation effect). The congestion phenomenon is due to the increased number of
setups (and thus total setup time). In this paper, we consider the Surrogate method and the Stochastic
comparison algorithm. According to our findings, the Surrogate method finds the optimal solution of the
original discrete problem and exhibits a very fast convergence. Some numerical results are reported.

& 2013 Published by Elsevier B.V.

1. Introduction

The design and control of discrete event and hybrid systems
frequently involve discrete parameters. In designing manufacturing
systems, for instance, the determination of buffer sizes and numbers
of equipment of some type, fixture or pallets are crucial. Similarly,
operating such systems often reduce the control of integer valued
thresholds and the so-called hedging point. Given the combinatorially
explosive nature of the discrete search spaces involved in such
systems, they are usually analyzed on the basis of stochastic discrete
optimization. The problem of stochastic optimization for arbitrary
objection functions presents a dual challenge. First, one needs to
repeatedly estimate the objective function, when no closed form
expression is available, this is only possible via simulation. Second,
one has to face the possibility of determining local, rather the global
optima. One common approach to solve the continuous optimization
problem is based on estimated gradient information which drives the
optimization process to a minimal point. However, this approach can
easily lead to a local minimum. To overcome this problem, it is
necessary to allow the optimization process to occasionally move to a
bad neighboring point so as to provide the opportunity to jump out
of a local minima. While the area of stochastic optimization over
continuous decision space is rich and usually involves gradient-based
techniques as in several well-known stochastic approximation algo-
rithms, the literature in the area of discrete stochastic optimization is
relatively limited. Most known approaches are based on some form
of random search, with the added difficulty of having to estimate the

cost function at every step. Such algorithms have been proposed by
Yan and Mukai (e.g., Yan and Mukai, 1992) and Gong et al. (e.g., Gong
and Ho, 1987). For this reason the surrogate method is proposed (e.g.,
Gokbayrak and Cassandras, 2001), with this approach the original
discrete set is transformed into a continuous set over which a
surrogate optimization problem is defined and subsequently solved.
As in earlier works an important feature of this approach is that
every discrete state in the optimization process remains feasible, so
that this scheme can be used on line to adjust the decision vector as
operating conditions change over time. Thus, at every step of the
continuous optimization process, the continuous state obtained is
mapped back into a feasible discrete state; based on a realization
under a feasible state, new sensitivity estimates are obtained that
drive the surrogate problem to yield the next continuous state. The
proposed scheme, therefore, involves an interplay of sensitivity-
driven iterations and continuous-to-discrete state transformation.
In practice, with the surrogate methodology, the discrete optimization
is transformed into a surrogate continuous problem where the
gradient based approach is used and the discrete problem solution
is continuously adjusted on line. The construction of the neighbor is
relatively simple and through a careful choice of the step size it is
also possible to overcome the possibility of getting stuck in a local
minimum. This method has given good results in different areas of
application (see Adacher and Cipriani, 2010; Adacher, 2012).

In this paper, we extend a surrogate problem approach so as to
tackle the lot sizing problem in manufacturing systems (Cassandras
and Rui, 2000).

Most research on lot size optimization has focused on single-
stage batch production systems. However, in practice it is of interest
to optimize performance over multiple processing stages, where
stages are not independent. The models in this study consider also
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two stages, where multiple products are produced using the proces-
sing stages sequentially. The objective is to minimize total lot flow
times across both stages by selecting the optimal lot sizes for each
product, and subjecting the remaining constant across both stages.

The paper is organized as follows: in Section 2 we report the
literature review, in Section 3 we introduce the lot sizing problem.
In Section 4 we show the basic concepts of the stochastic
optimization and the stochastic comparison algorithm is extended
to our problem. Section 5 provides a framework for the surrogate
approach and in Sections 6 and 7 we propose a formulation of the
surrogate approach for the lot sizing problem. In Sections 6 and 7
we present some representative numerical results from the
application of those optimization approaches to the lot sizing
problem. The conclusion is drawn in Section 8.

2. Literature review

In the manufacturing system literature, the main concern is to
determine lot sizes of manufactured parts for several future
periods that minimize the sum of setup and inventory holding
costs over a planning horizon, while satisfying a known demand
in discrete time. The study of this problem has its origins in
the Economic Order Quantity (EOQ) extended through the years
(see Harris, 1913), and eventually formulated mathematically as
a mixed integer programming problem with binary variables
representing setups for each job-period combination. The problem
is NP-hard (Florian et al., 1980), so that various heuristics have
been proposed as in Maes and Wassenhove (1988), Absi and
Kedad-Sidhoum (2007), Belvaux and Wolsey (2000), Akartunah
and Miller (2009), Federgruen and Meissner (2007), Karimi and
Ghomiand (2006), Kim and Han (2010) and Kucukyavuz (2009).
In addition, extensions to multi-stage lot-sizing problems have
been considered in Afentakis et al. (1984), Simpson and Erengue
(2005), Sahling and Buschkuhl (2009), Sadtler (2003), and
Tempelmeier (2009), where users (parts) go through a sequence
of resources (machines) leading to formidable complexity even if
one assumes unlimited resource capacities. This line of work is
based on discrete-time models, usually assuming fixed setup costs
and inventory holding costs, and it ignores random effects in the
job arrival and service processes since there is actually no notion
of “jobs” in such discrete-time models.

Since the 1980s, several researchers have dealt with stochastic lot
interarrival times and the prediction of lot queue or flow times.
Karmarkar was one of the earliest to examine the effects of lot-sizing
policies using queuing models. Several papers were published
describing the impact of the lot sizes on flow times and work-in-
process (WIP) inventory. Analysis of the single-product, single-stage
problem Karmakar (1987) dealt primarily with M/M/1 and M/G/1
queuing assumptions. Later extensions included multiple product,
multiple stage models. The single-stage lot sizing problem of most
relevance to manufacturing is one that allows general interarrival
time assumptions. Only approximate GI/G/1 queuing relationships
can be used since no closed form solution exists. Fowler et al. (2002)
investigated lot size optimization in a multiple product, multiple
stage production environment through the use of queuing relation-
ships and Genetic Algorithm search techniques. Finally, in Enns and
Li (2004) the authors considered the problem of auto-correlation
between lot interarrival times in manufacturing systems. It was
demonstrated that lot size optimization based on GI/G/1 assump-
tions worked poorly in a multiple product, single stage environment
where lot arrivals were derived from accumulated independent
customer demand. A methodology was developed that used dynamic
performance feedback to adjust queuing relationships so as to
compensate for auto-correlation effects. In general, the costs con-
sidered by lot-sizing models are restricted to production, inventory

and setup. Some recent reviews of lot-sizing problems can be found
in Karimi et al. (2003) and in Brahimi et al. (2006). A new way to
solve the “lot-sizing” problem viewed as a stochastic noncooperative
resource contention game is presented for a single station in Chen
and Cassandras (2012). In Vroblefski et al. (2000) the author puts in
evidence that transportation costs are one of the highest costs in the
logistics of distributed warehousing. The objective of a firm is to
improve the performance of their operations through the adoption of
continuous improvement programmes, e.g., reducing set-ups times,
increasing production capacity and eliminating rework. The learning
curve can be used to describe and predict such improvements see
Jaber and Bonney (2003) and Mohamad and Mehmood (2010).

3. The ”Lot Sizing” problem

In this paper, we consider the lot sizing problem in manufactur-
ing systems. A “lot” in manufacturing systems is a group of parts of
similar types that are processed together at a workstation following
a “setup” to accommodate this particular part type. When a lot has
completed processing, the workstation switches over to a new part
type through a setup associated with this new type. Clearly, during
a setup the workstation is idle, so it is desirable to minimize the
total setup time over a given production period. If lots are small, the
workstation engages in frequent setups. If, on the other hand, lots
are large, then part types must experience long queueing delays as
they await their turn.

Recently the idea of combining batching and queueing models
has attracted great attention from many researchers, as it introduces
the aspect of time from queueing into inventory theory. Despite
queueing delay is an aspect that was almost ignored in the classical
inventory models, it is clear that it constitutes a major part of the
manufacturing (Hafner, 1991; Karmakar et al., 1985; Karmakar, 1987).
Models relating queueing delay to batching represent the production
facility as a queueing system with one or more servers where orders
(or batches) represent individual customers. We analyze a queue of
orders in front of the production facility, but there is no finished
goods inventory (once produced, products are immediately delivered
to the customer). Karmarkar initiated pioneering work (Karmakar
et al., 1985; Karmakar, 1987), the main result from this queueing
approach is the existence of a convex relationship between batch
size and waiting time (including processing). Large lot sizes will
cause long lead times (the batching effect), as the lot size gets smaller
the lead time will decrease but once a minimal lot size is reached a
further reduction of the lot size will cause high traffic intensities
resulting in longer lead times (the saturation effect). The congestion
phenomenon is due to the increased number of setups (and thus
total setup time).

3.1. Single station

The model can be described as follows: assume a demand
process, characterized by individual customer arrivals per time
unit. Next we wait until n customers have arrived (batch collec-
tion; the batch size n is the decision variable) after which the
production facility incurs a setup using τ time units. Finally, the
customers are served on a first come, first served basis. Once
the individual customer is served, the customers have to wait until
the complete batch is finished and then leave the system. We are
interested in the time W that customers spend in the system
(sojourn time).

The lot sizing problem is a complex optimization problem: lot
sizes take integer values defining a large discrete state space, while
the system itself operates in a stochastic environment where one
can typically only estimate average part system times through
direct observation or simulation. The interarrival and process time

L. Adacher, C.G. Cassandras / Int. J. Production Economics ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

Please cite this article as: Adacher, L., Cassandras, C.G., Lot size optimization in manufacturing systems: The surrogate method.
International Journal of Production Economics (2013), http://dx.doi.org/10.1016/j.ijpe.2013.07.026i

http://dx.doi.org/10.1016/j.ijpe.2013.07.026
http://dx.doi.org/10.1016/j.ijpe.2013.07.026
http://dx.doi.org/10.1016/j.ijpe.2013.07.026


Download English Version:

https://daneshyari.com/en/article/5080079

Download Persian Version:

https://daneshyari.com/article/5080079

Daneshyari.com

https://daneshyari.com/en/article/5080079
https://daneshyari.com/article/5080079
https://daneshyari.com

