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a b s t r a c t

We study the impact on inventory of an unexpected, non-linear, time-dependent demand and present
the exact solutions over time to the supply chain equations without requiring any approximations.
We begin by imposing a boundary condition of stability at infinity, from which we derive expressions for
the estimated demand and the target work in progress when the demand is time-dependent. The
resulting inventory equation is solved in terms of the Lambert modes with all of the demand non-
linearities confined to the pre-shape function. The series solution is exact, and all terms are reasonably
easy to calculate, so users can determine the inventory behavior to any desired precision. To illustrate, we
solve the equations for a non-linear, quadratic time-dependence in the demand. For practical use, only a
few terms in the series are required, a proposition illustrated by the For All Practical Purposes (FAPP)
solution. While the paper provides a theoretical foundation, the result is decidedly practical: An accurate
and reasonably easy-to-implement model that companies can use to analyze the impact of non-linear,
time-dependent demands.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Decreasing product life-cycles, rapidly evolving consumer
tastes and the continual introduction of new products result in
complex, time-dependent demands (Tang and Tang, 2002). For
such volatile products, there may be little historical data on which
to base estimates of the future demand and successful ordering
strategies are much more difficult to develop (Warburton and
Stratton, 2002). For companies with stable product lines, historic
sales can be reasonable predictors of future demand, leading to
effective inventory management of such products with a corre-
sponding improvement in financial performance (Capkun et al.,
2009).

We address this problem by providing a model of inventory
control for arbitrary, non-linear, and time-dependent demands.
We assume, as in much of the real world, that unexpected, non-
stationary demand changes occur, and that companies must deal
with those surprises without foreknowledge. We work in contin-
uous system dynamics in the time domain (Warburton, 2004b)
where the demand, inventory and work-in-process (WIP) levels

are continuously observed and forecasts are continuously adjusted
to reflect the most up-to-date information. Our goal is to provide
analytical techniques to companies so that they can study several
different models of possible future demand scenarios and develop
appropriate ordering strategies.

The main contribution of this paper is the derivation an exact
solution for the inventory behavior over time as it reacts to an
unexpected change in demand and even for one that is non-linear.
The solution is quite general and no approximations or simplifica-
tions are required. The solution is in terms of a series, in which all
terms are easily calculated, so users can determine the inventory
behavior to any desired precision.

We derive the expression for the Target Work-in-Process when
the demand is time-dependent and show that a stable inventory
requires a perfectly known future demand, which is, in practice,
unknown and must be estimated. However, even if the demand is
incorrectly forecast, the solution is still exact, just not guaranteed
to be stable. We demonstrate this by exactly solving the equations
for an imperfectly known, non-linear demand and show that the
inventory does indeed diverge.

To illustrate the method, we solve the equations for a non-linear
demand with a quadratic time-dependence. While the paper provides
a theoretical foundation, the contribution is decidedly practical: An
accurate and reasonably easy-to-implement model that companies
can use to develop ordering strategies for non-linear, time-dependent
demands.
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The structure of the paper is as follows. The next section
reviews the literature applicable to time-dependent demand
models. The inventory and ordering equations are introduced
and then, using the boundary condition at infinity, we derive
explicit expressions for the estimated demand and the Target
Work-in-Process (WIP) when the demand is time-dependent
(Section 2). In Section 3, we derive the exact analytical solutions
to the combined inventory and ordering equations. To illustrate
the method, in Section 4 we derive the exact inventory solution
when the demand has a non-linear, quadratic time-dependence.
In Section 5, we provide three practical applications: the exact
solution when the demand is mis-estimated; a practical approach,
the For All Practical Purposes (FAPP) solution, which is easy to
calculate and reasonably accurate; and, the impact of adding
random noise to a quadratic, time dependence in the demand.
Finally, we provide some concluding remarks in Section 6.

1.1. Relevant literature

Our model is based on the continuous-time form of the
inventory and ordering Warburton, 2004a, 2004b. Childerhouse
and Towill (2000) established the basis for continuous models from
which a number of important features of supply chains have already
emerged, including inventory stability properties (Warburton et al.,
2004) and resonances in multi-echelon supply chains (Hodgson and
Warburton, 2009).

Continuous-time models are consistent with discrete-time models,
which are typically analyzed with system dynamics. Disney and
Lambrecht (2008) provided a comprehensive account of the state-
of-the-art and an extensive literature survey. Disney et al. (2006)
demonstrated that management insights gained from the continuous
and discrete time domains are very similar, and concluded that one
may use either time domain in an analysis. This is particularly relevant
because questions that are difficult to analyze in one time domain
may be easier in the other and, while the exact results may differ
slightly, the qualitative nature of the management conclusions are
essentially equivalent (Warburton and Disney, 2007). Therefore, the
insights from this analysis should translate into the discrete domain.

We use an ordering policy where the aim is to keep the
inventory as close as possible to some target base-stock level, which
has proven to be a beneficial technique in planning, inventory
control, and forecasting (Towill, 1982). The same policy has been the
subject of extensive analysis in both the continuous and discrete
domains (Dejonckhere et al., 2004). For example, Nielsen and
Nielsen (2008) show that small changes in base variables, such as
skills, the customer base, or the work in process may have a major
influence on profit, and may be impossible to predict without a
dynamic model.

Our goal is to provide exact solutions to the supply chain
equations when there is a time-dependent demand. Usually, such
models are complex and are not amenable to exact solutions. For
example, Aviv (2003) modeled a demand that evolved according to
a vector autoregressive time series, and proposed an adaptive
inventory replenishment policy for the supply chain members.
Aviv (2007) later proposed a unified time-series framework for
forecasting and inventory control, with the critical observations
that supply chains are rich with demand information, that fore-
casting must cope with a variety of demand characteristics, and
that models need to be continually revised over time, confirming
the importance of the domain we have chosen to study. Earlier,
Aviv (2002) studied an auto-regressive time series demand, which
is valuable because one can study more realistic (i.e., non-i.i.d.)
demands. Other approaches include those of Diponegoro and
Sarker (2007), who formulated an integer, non-linear program-
ming problem, and Moon et al. (2006), who used an adaptive
genetic algorithm for advanced planning. These studies illustrate

the need for analytical solutions when the demand is time-
dependent.

We also study the impact of noise on a non-linear demand
because sometimes the data are so noisy, or the trend is so erratic,
that even a linear trend is not accurate (Roberts, 1982). Gardner
and McKenzie (1985) introduced a damped trend procedure that
works well in these situations. In a more general theoretical
framework, Levi et al. (2005) addressed the problem of finding
computationally efficient, and provably good, inventory control
policies with correlated and non-stationary (time-dependent)
stochastic demands. We improve on these studies by providing
analytical solutions from which the properties are derivable.

Continuous mathematics is also employed in differential game
models (El Ouardighi et al., 2008), where the goal is to develop
strategies that are optimal for both the operational and marketing
departments. Marketing's objective is to maximize the discounted
flow of revenues minus quadratic advertising costs over an infinite
time horizon. Our model uses an entirely different approach because
we do not need to assume any relationships or conduct an optimality
argument as the inventory and ordering equations are well-
established.

Another important paradigm relevant to complex demand
structures is dynamic programming, which is effective in char-
acterizing the optimal policy. While the models are often complex,
the optimal policies are sometimes relatively simple (Lingxiu and
Lee, 2003; Zipkin, 2000). However, a significant problem is that
correlated and non-stationary demands cause the state space to
grow exponentially—the curse of dimensionality. Also, when the
demand varies significantly, promising policies may perform
poorly (Levi et al., 2007). These approaches provide some general
guidance but not a general solution.

We include the standard WIP terms, the importance of which
was established by Enns (2001) and Selcuk et al. (2006). Ramdas
and Spekman (2000) established that WIP tracking seems to be a
strategic necessity. Naim and Towill (1995) originally introduced
WIP into a supply chain model, followed by Disney et al. (1997)
whose model assumed a time-independent demand and, there-
fore, a constant WIP. We use the same structure for our ordering
policy, but generalize it to include non-linear time-dependencies.

Many papers assume that the Target WIP is a constant, which
makes sense when the demand is i.i.d. and the mean demand is
known. However, when the demand is time-dependent, so are the
WIP and Target WIP terms. Dejonckhere et al. (2004) treat the
Target WIP as dynamic and while their expression for the Target
WIP looks reasonable, it was simply assumed and not formally
justified. We will provide a different expression for the Target WIP,
one that guarantees stability. We also explain why the Dejonckhere
et al. (2004) expression works reasonably well in practice.

When the demand varies, long lead times impose high costs
due to rising inventory, safety stocks, and WIP. Pahl et al. (2007)
provided an in-depth discussion of the state-of-the art. Goncalves
(2006) provided insight into the importance of time-dependent
demands and, in particular, oscillations, which affect supply chain
instability. When the demand varies over time, our analytical
model allows the study of both stability and long lead times.

A common supply chain issue facing companies is the so-called
Bullwhip Effect, in which forecasts are based on the demand for
intermediate products, and not on the true demand for the product
(Lee et al., 1997b, 1997a; Chen et al., 2000). Metters (1997)
quantified that it can be very costly and, interestingly, the real
world may have to cope with bullwhip amplification as high as 20:1
(Holmstrom, 1997). For time-dependent demands, the definition of
the Bullwhip Effect is problematic because the definitions usually
assume time-independent variances. Our approach is to present the
evolution of the inventory, a model that is more suited to a demand
that evolves over time.
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