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a b s t r a c t

This paper explores the rationale for planning time-phased safety stocks. We assert that a single safety
stock vector for the entire planning horizon (typically based on stationary demand forecast errors and
stationary replenishment lead times) may be insufficient for hedging against uncertainties. We argue
that planning time-phased safety stocks is prudent when faced with non-stationary demand and/or non-
stationary supply. We scrutinize particularly whenever non-stationarity is due to heteroscedastic
demand and resulting heteroscedastic demand forecast errors. Consequently, an empirical evidence on
a wide basis is provided that such errors for manufactured products are highly heteroscedastic. To test
the phenomenon and to estimate its impact at stock keeping unit level, we have conducted an
econometric analysis using the EUROSTAT data from 1985 onwards. Specifically, we analyze new
industrial orders across various industries and types of goods manufactured in the five largest European
economies by using EViews 7.0. To demonstrate which inventory savings can accrue when safety stock
levels are deliberately planned to vary in accordance with the observed heteroscedasticity, we estimate
potential safety stock savings reusing the same data sets. Our findings indicate that one realization of
non-stationarity, i.e., heteroscedastic demand, is indeed pervasive in the European industry. Thus,
recognition of this demand nature may add to effective inventory management policies: reducing
unnecessary safety stocks, improving service, or both relative to a single-valued safety stock regimen.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

European companies invest and hold inventory worth billions
of Euros (e.g., in Germany on average 14% of revenue; Harting,
2005), with around one fifth of inventory assets accounting for
safety stocks. Yet, despite this significance, it can be observed in
inventory practice that safety stock targets are typically set at the
beginning of an operating year to a single appropriate level to be
applied for future time periods (after estimating risks).

We argue that a time-invariant safety stock level may not be
sufficient to respond to all the variabilities a company is exposed
to nowadays. We propose that time-phased targets for each
planning period could enhance inventory performance, when
deliberately considering non-stationary demand and supply pro-
cesses. Indeed, various sources of systematically increasing or
decreasing variabilities can be identified. On the supply side,
capacities change, e.g., factories schedule holidays during the
summer, resulting to variabilities in lead times. Transportation

lead times may fluctuate more in winter (due to sudden icy roads)
than in summer. On the demand side, components and spare-parts
providers often face irregular customer orders. Technological
advances or reputation crises can persistently destroy ‘healthy’
demand patterns. Distribution of demand may change during a
product's life cycle—in the initial stage, demand is often more
variable than later on. Also, unpredictable economic changes can
trigger demand changes (e.g., customers may prefer smaller
packages during times of low GDP growth rates). Exchange rates
can also affect the price of products and, in turn, lead to demand
variability.

In practice, however, safety stock levels are commonly calcu-
lated on the assumption of stationary processes, that is the size
and timing of the increase or decrease can be predicted accurately.
It is observed that (time invariant) safety stocks are significantly
higher during the operating year than the single-valued target
level agreed on at the beginning; additionally, there is usually no
system to alert inventory managers to this situation (Mahadevan,
2009, p. 363). Certainly, when replenishment lead time and
demand are stationary, constant safety stocks may then suffice.

In this article, we focus on the case of non-stationary demand.
We explicitly aim to provide evidence that demand forecast errors
systematically vary over time (i.e., heteroscedastic), adding to the
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motivation to implement a time-phased safety stock policy. Three
specific questions are studied here:

(1) To what degree is non-stationarity in demand forecast errors
due to heteroscedastic demand variance in manufacturing
industries in the major European economies?

(2) What are the right ‘doses’ of safety stocks reflecting hetero-
scedastic demand variance?

(3) Which European industries could have the largest cost-saving
potentials switching to a time-phased safety stock policy?

Our empirical study could bring us nearer to our vision of using
econometrical findings for inventory planning and control pur-
poses. More specifically, policies for different inventory types may
be refined if the econometric knowledge about the non-stationary
nature of supply and demand processes can be incorporated.

The rest of the article is organized as follows. Section 2 outlines
relevant literature and software applications. Section 3 describes
the selected sample data and adjustments. Next, we present our
empirical analysis and test results in Section 4. Managerial
implications are illustrated with potential safety stock savings by
both using an example (Section 5) and industry data (Section 6).
Finally, we conclude with a brief discussion and promising direc-
tions for future research.

2. Literature review

Safety stock research has been an area of intensive inquiry
since Graves (1988) identified a huge research gap, and has been
revisited since then, with considerable efforts invested into inven-
tory modeling (e.g. Silver et al., 1998; Grubbström and Tang, 1999;
Minner, 2000; Zipkin, 2000; Minner, 1997). However, as we see it,
the body of inventory theory literature for treating demand and
lead times as random variables is tiny, despite this aspect being
identified as a promising and fruitful research topic a decade ago
(see Wagner, 2002; Silver, 2008).

Notable exceptions in the literature pick up non-stationary
processes. Hillestad and Carrillo (1980) investigate time-varying
demand processes in spare-parts planning and repair processes in
the US Air Force—(war) scenarios are typically highly dynamic.
Speaking of single-item inventories, Song and Zipkin (1993)
present optimal policies for non-stationary demand (that follows
a Markov-modulated Poisson process) using value-iteration algo-
rithms. Similar demand processes are simulated by Chen and Song
(2001) and Abhyankar and Graves (2001). Moreover, the forecast
system of a non-stationary ARMA(1,1) demand process and an
inventory system is integrated in order to explain causes for the
bullwhip effect (Gaalman and Disney, 2006, 2009). Fully observed
non-stationary demand and partially observed non-stationary
demand (e.g. when the economic environment is unknown) (e.g.,
Bayraktar and Ludkovski, 2010) can be distinguished. Graves
(1999) suggests an adaptive base-stock policy for the same type
of inventory system (i.e. single-item), where non-stationary
demand follows an integrated moving average process of order
(0,1,1). Safety stock required is much greater for stationary
demand. While the relationship between safety stock require-
ments and replenishment lead-time in the stationary case is
concave, the relationship in the non-stationary case is convex.

Various contributions explore non-stationary demand in safety
stock placement models. For example, Graves and Willems (2008)
focus on limited-life (electronic) products that alter quickly from
one life-cycle phase to another (while the replenishment lead time
is assumed to be deterministic). They assume a periodic review of
base-stock replenishment regimen. A constant-service-time policy
(that assumes stationary locations for safety stocks) is compared

with a dynamic policy (service times are optimized in each period). If
the non-stationary demand bound is a concave function, then the
optimization problem is equivalent to that for the stationary demand
case (for which highly efficient algorithms exist).

Time aspects have recently been integrated into service levels.
Helber et al. (2013) propose a delta service level that reflects both
the size of backorders and customers' waiting time in the context
of dynamic lot sizing. Little's law is used to deduct an average
expected waiting time that can be interpreted as a linear repre-
sentation of the delta service level.

Aiming at improving production scheduling, Vargas (2009)
extends the well-known Wagner–Whitin (1958) algorithm to the
case when periodic demand density is given and time-varying.
Safety stock requirements are implicitly included in planned order
quantities whereby the objective is to minimize the sum of
expected setup, backorder, and inventory holding costs. The
stochastic dynamic programming problem corresponds to solving
a shortest path problem. Taking random demand and a target beta
service level into account, Tempelmeier and Herpers (2011)
propose a heuristic for the dynamic multi-item capacitated lot
sizing problem—the stochastic version is built on Maes and van
Wassenhove (1988).

Formerly, due to high computational demands, non-stationary
inventory policies have not been used in many real-life applications
(Silver et al. 1998). However, recent advances in the information
technology have motivated some software vendors to refine inven-
tory algorithms to reflect more realistic planning environments.

SAP provides an ‘Enhanced Safety Stock Planning’ feature in APO
(Advanced Planning and Optimization), which automatically
adapts safety stocks based on target service levels using require-
ment forecasts and actual and planned replenishment lead times.
If planned safety stocks in one period exceed those in a previous
period, a ‘virtual requirement’ is generated representing the
quantity difference; if lower, requirements are partially covered
with excess safety stock from the previous period. However, APO
suggests that virtual requirements should be regular and not
highly fluctuating (see Hoppe, 2006, p. 311).

With its multi-stage inventory planning (MIPO) module, Smart-
Ops (recently acquired by SAP) offers a periodic review base-stock
replenishment policy responding to non-stationary end customer
demands. Starting at the end customer node(s), demand and
orders are propagated to back up the supply chain so that service
level requirements at each node in the network are satisfied. Each
location receives a week-specific suggestion for safety stock for a
particular product line. The algorithm even breaks inventory down
by purpose such as cycle stock, safety stock, and prebuild stock.
However, end customer demand is not realized until the due date,
so that optimal (in terms of total inventory cost) allocation of
safety stocks in the network cannot be modeled. MIPO has led to
remarkable improvements in inventory and customer service at
Deere & Company (Troyer et al., 2005).

Logility's Voyager Solution Suite (which acquired Optiant Soft-
ware in 2010) provides time-phased safety stock plans that are fed
into SAP APO. The module is based on Graves and Willems' model
(2000) (for details see Neale and Willems, 2009). Logility's website
claims: ‘you can automatically calculate time-phased inventory
plans—instead of stockpiling excess products.’ Operating improve-
ments have been produced in the management of Microsoft's
Entertainment and Devices (E&D) Division (e.g., Xbox).

Inventory performance has been more and more econometrically
analyzed—with the majority of research linked to inventory turnover
in publicly listed US retailers. So factors are identified explaining
inventory productivity and the extent to which they influence
corporate performance. Recently, Alan et al. (2012) stress that inven-
tory performance strongly predicts future stock returns. To enhance
the value of interpretation, text-book inventory measures have also
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