
Dynamic lotsizing with a finite production rate

Robert W. Grubbström n
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a b s t r a c t

The dynamic lotsizing problem concerns the determination of optimally produced/delivered batch

quantities, when demand, which is to be satisfied, is distributed over time in different amounts at

different times. The standard formulation assumes that these batches are provided instantaneously,

i.e. that the production rate is infinite.

Using a cumulative geometrical representation for demand and production, it has previously been

demonstrated that the inner-corner condition for an optimal production plan reduces the number of

possible optimal replenishment times to a finite set of given points, at which replenishments can be

made. The problem is thereby turned into choosing from a set of zero/one decisions, whether or not to

replenish each time there is a demand. If n is the number of demand events, this provides 2n�1

alternatives, of which at least one solution must be optimal. This condition applies, whether an Average

Cost approach or the Net Present Value principle is applied, and the condition is valid in continuous

time, and therefore in discrete time.

In the current paper, the assumption of an infinite production rate is relaxed, and consequences for

the inner-corner condition are investigated. It is then shown that the inner-corner condition needs to

be modified to a tangency condition between cumulative requirements and cumulative production.

Also, we have confirmed the additional restriction for feasibility in the finite production case

(provided by Hill, 1997), namely the production rate restriction. Furthermore, in the NPV case, one

further necessary condition for optimality, the distance restriction concerning the proximity between

adjacent production intervals, has been derived. In an example this condition has shown to reduce the

number of candidate solutions for optimality still further. An algorithm leading to the optimal solution

is presented.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction and notation

The dynamic lotsizing problem is a variational problem, namely to
determine cumulative production over time requiring cumulative
production to be at least cumulative requirements at each point in
time optimising an objective function. The issue of determining how
much to produce (optimal lotsizes) has a history of close to a century
(Harris, 1913; Erlenkotter, 1989). Halfway through this history the
dynamic lotsizing problem was formulated and solved by a dynamic
programming approach (Wagner and Whitin, 1958). Several other
algorithms have later been suggested, such as those in Silver and
Meal (1973), Federgruen and Tzur (1991), and Grubbström (1999,
2005). For an early overview, see De Bodt et al. (1984).

The majority of approaches have used a discrete time framework
in which times (periods), at which requirements appear, are integers.
The current author has argued against this restriction for a long time,
instead advocating the use of a continuous time framework (of which

discrete timing is a special case), and has expressed the dynamic
lotsizing problem in continuous time, including continuous-time
formulations of the Wagner–Whitin and Silver–Meal algorithms
(Grubbström, 1997, 1999, 2005). The capacitated dynamic lotsizing
problem in continuous time was introduced by Khmelnitsky and Tzur
(2004).

The overwhelming volume of literature on the subject of
lotsizing is based upon an Average Cost (AC) approach, in parti-
cular balancing inventory holding costs against fixed setup costs
for each batch produced. Against this stands the Net Present Value

(NPV) principle, based on the monetary stream consequences of
decisions (cash flows), compatible with financial methodology.
Through the years attention has been given to the differences of
these two approaches (Hadley, 1964; Trippi and Levin, 1974;
Grubbström, 1980; Kim et al., 1986) and in recent years, an
increasing interest in the use of the NPV principle for lotsizing
optimisation has appeared (Teunter and van der Laan, 2002;
Grubbström and Kingsman, 2004; Beullens and Janssens, 2011).
For standard problems, the average cost is shown to correspond
to a mixed zeroth and first-order approximation in the interest
rate of the NPV expression.
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It has been recognised for a long time that the dynamic
lotsizing problem may be viewed as a binary problem, whether
or not to replenish at times when requirements appear (Veinott,
1969). This binary view led to the ‘‘inner-corner’’ condition for a
production plan to qualify as a candidate for optimality, and it
holds even for complex multi-item production structures
(Grubbström et al., 2009; Grubbström and Tang, 2012). The
inner-corner condition is a geometrical statement, in the discrete
time case equivalent with ‘‘Inventory is not to be carried into a
period where production takes place’’ (Aryanezhad, 1992,
pp. 425–427).

The only two papers in the literature we have found concen-
trating on the current problem of dynamic lotsizing with a finite
production rate are those of Hill (1997), and of Song and Chan
(2005). In the first of these references, the problem is stated
exactly as it is here, but in both references the authors restrict the
objective function to applying only the AC principle. Neither Hill
nor Song and Chan use cumulative functions for requirements and
production, and, at least not explicitly, they do not formulate the
decision variables in binary form. Because cumulate functions are
not used, the inner-corner condition cannot be recognised geo-
metrically. In Hill, however, what is below called the production

rate restriction is formulated in a similar way, and the main
theorem offered by Hill is the same result as ours, but its validity
is limited to the AC objective assumption. While Hill formulates
and solves the problem in a continuous time framework, Song and
Chan start with continuous time, but later split time into discrete
periods. But Song and Chan generalise the problem of Hill to a
case when AC includes backlogging costs, which is not considered
here. Both of these papers end up proposing a dynamic program-
ming algorithm.

The original dynamic lotsizing problem assumes that replen-
ishments take place instantaneously, irrespective of their size.
In the current paper the goal is to relax this restriction and
study the consequences for the inner-corner condition when the
production rate is finite.

The following main notation is introduced (additional notation
will be used as the need arises).

n Given number of requirement events.
ti Given time at which the ith requirement appears, i¼1,

2,y,n.
ti¼tiþ1�ti Time interval between (iþ1)st and ith requirement

events, i¼1, 2, y, n�1.
Di Given size of requirement at time ti, i¼1, 2,y,n.
Di ¼

Pi

j ¼ 1

Dj Cumulative requirements immediately after time ti.
Pi Cumulative production immediately after time ti.
c Unit production cost (out-payment).
K Setup cost for producing one batch (ordering cost).
h Inventory holding cost per unit and time unit.
r Continuous interest rate, per time unit.
q Finite production rate, units per time unit.

The following section provides a summary of the classical
dynamic lotsizing problem (infinite production rate) when using

binary decision variables. Section 3 extends the theory to the case
of a constant finite production rate and includes our main
theorem and two corollaries. Here a new result is that for
optimality two successive production batches may not differ in
time more than by a specified expression of the given parameters.
In Section 4 expressions are developed for the objective functions
and an algorithm is provided, followed by a section with two
numerical examples. We finalise with conclusions and a list of
references.

2. Brief description of dynamic lotsizing with infinite
production rate

In the case of an infinite production rate (treated in essentially
all papers hitherto) cumulative demand follows a staircase func-
tion and so does cumulative production when the production rate
is infinite. A feasible production plan is any staircase function
above or which touches the cumulative requirements from above.
The basic question is which production staircase to choose when
the objective function is to be optimised.

It has been shown earlier that the only solutions that can
qualify as candidates for an optimal solution, whether the NPV or
AC measure is the objective, are cumulative staircases that fit into
inner corners as shown in Fig. 1. This has the consequence that
the set of optimal production solutions must be found from those
either having an inner-corner contact at a requirement event, or
no production. This restricts the number of feasible optimal
solutions to 2n�1, since there must always be a contact at the
first inner corner (start of process).

Fig. 1 shows the given demand staircase (Curve A, bold) and
three types of feasible cumulative production curves (no
shortages). Curve B (dotted) illustrates the most general case of
feasible production (any non-decreasing curve above or possibly
touching cumulative demand), Curve C (dotted and dashed) the
general case of feasible production taking place in batches,
making cumulative production a staircase function, and Curve D
(dashed) a batch-production case which is a candidate for
optimality, since it meets the inner-corner condition.

Using the binary variables aj, with aj¼1 meaning a setup at tj,
and aj¼0, if not, cumulative production immediately after tj�1

will either be Pj�1 ¼Dj�1 or Pj�1 ¼ Pj, respectively. As earlier
shown, (for instance in Grubbström et al., 2009), this leads to a
unique solution

Pj ¼ Djþ
Xn

k ¼ jþ1

Dk

Yk

l ¼ jþ1

1�alð Þ

0
@

1
A, ð1Þ

showing how cumulative production depends on the binary
decision variables ai and the given requirements. Here, as in the
following, the convention that

Qj
l ¼ jþ1

1�alð Þ ¼ 1 is adopted. The
batch size of production when it takes place (the lotsize), is then
given by

Qj ¼ Pj�Pj�1 ¼ aj

Xn

k ¼ j

Dk

Yk

l ¼ jþ1

1�alð Þ ð2Þ

If there is no setup at tj, i.e. aj¼0, then Qj¼0.
We may also enquire as to how the timing of supply depends

on the decision variables aj. Let Tj denote the time that the
supplies immediately after tj last until. Then, if there is a setup at
tj, then aj¼1 and Tj�1 ¼ tj, and if not, aj¼0, and Tj ¼ Tj�1. This
leads to the solution

Tj ¼ tjþ1þ
Xn�1

k ¼ jþ1

tk

Yk

l ¼ jþ1

1�alð Þ, ð3Þ
Fig. 1. Illustration of inner-corner condition. From Grubbström and Tang (2012).
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