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a b s t r a c t

Distribution problems are of high relevance within the supply chain system. In real life situations various
different commodities may flow in the distribution process. Furthermore, the connection between
production and demand centres makes use of complex mesh networks that can include diversification
constraints to avoid overcharged paths. In addition, the consideration in certain situations of economies
of scale gives rise to non-linear cost functions that make it difficult to deal with an optimal routing
scheme. This problem is well represented by the multicommodity flow distribution networks with
diversification constraints and concave costs (MFDCC) problem. Here we present an optimal algorithm
based on the Kuhn–Tucker optimality conditions of the problem and capable of supplying optimal
distribution routes in such complex networks. The algorithm follows an iterative procedure.
Each iteration constructive solutions are checked with respect to the Kuhn–Tucker optimality conditions.
Solutions consider a set of paths transporting all the demand allowed by its diversification constraint
(saturated paths), a set of empty paths, and an indicator path transporting the remaining demand to
satisfy the demand equation. The algorithm reduces the total cost in the network in a monotonic
sequence to the optimum. The algorithmwas tested in a trial library and the optimumwas reached for all
the instances. The algorithm showed a major dependency with respect to the number of nodes and arcs
of the graph, as well as the density of arcs in the graph.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Distribution problems are of high relevance within the supply
chain system. One of the principal root problems in the family is
the transportation problem that was introduced in 1941 by
Hitchcock (1941). This has been researched extensively due to its
importance and the wide range of applications it has. The
transportation problem involves a network with a group of
production centres willing to send their commodity to a group
of demand centres through a set of arcs with linear costs.

However, in real life situations various different commodities
may flow instead of just one commodity (e.g. Kengpol et al., 2012).
Furthermore, each production centre is not connected with each
demand centre using a single arc but rather with a mesh network
of different arcs (Ubeda et al., 2011). Certain cases cannot be
correctly modelled using a linear cost function and require a more
complex way of modelling (Tsao and Sheen, 2012). Sometimes
more accurate results can be achieved with concave cost functions.

This situation arises when dealing with economies of scale which
are very common in many fields such as freight distribution and
demand routing systems, and even other technological fields such
as telecommunication networks.

In this paper, we consider a mesh network with a set of nodes
as the origin of demand and a set of nodes as the demand
destination. Each pair of nodes constitutes an origin-destination
pair which is known as a specific commodity, converting the
problem into a multicommodity flow problem. Additionally, the
costs in arcs are modelled by concave costs. Lastly, we propose
the diversification constraints needed to prevent the arcs from
becoming extremely loaded which can produce malfunction
effects on the network and may arise when concave costs are
involved as a result of the benefits offered by economies of scale.
This type of constraint increases the survivability and reliability of
the networks.

Distribution problems with concave costs are NP-Hard and
their optimal solution cannot be found in polynomial time. Several
authors have proposed approximate methods to tackle this pro-
blem, such as the linear approximation by Thach (1992), the
lagrangian relaxation by Larsson et al. (1994), or the dynamic
programming approach by Zangwill (1968), Florian and Klein
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(1971) and Burkard et al. (2001). Metaheuristic approaches have
also been tested although mainly in telecommunication network
problems (Kapsalis et al, 1993; Dengiz et al, 1997; Altiparmak et al,
2003; Zhou and Gen, 2003). In a more general case, Yan and Luo
(1999) developed a heuristic based on simulated annealing and
threshold acceptance, and Altiparmak and Karaoglan, (2008)
proposed a tabu approach to solve the transportation problem
with concave costs. Here, we have developed an optimal approach
based on the optimality Kuhn–Tucker conditions of the mathe-
matical formulation of the problem.

The paper then defines the problem and its mathematical
formulation in Section 2. Section 3 presents the Kuhn–Tucker
optimality conditions for the demand routing problem in multi-
commodity flow networks with diversification constraints and
concave costs that has been described in the previous section.
Next, the solution based on the optimality constraints demand
routing algorithm is proposed is Section 4. The results for a trial
library with 27 generated instances are presented in Section 5 and
the detailed procedure for an example network is developed.
Finally, the main conclusions are presented in Section 6.

2. Problem definition and formulation

Given a graph G¼(N,E) where N is the set of nodes and E the set
of arcs, a set of commodities K is considered and represents every
origin-destination pair of demand. We define each arc of the
network as eAE and the set of paths connecting every origin-
destination pair is given by P(k). A subset of this set is given by the
arc-disjoint paths, Pd(k).

Let γk be the demand volume for each origin-destination pair, k,
and δk the diversification parameter for each pair k, so that the
demand of pair k is routed along d1=δke different paths. As paths
and arcs are pre-computed, φeh is a binary parameter that
determines if arc e is on path h.

The variables of the problem are the demand fraction related to
the origin-destination pair k that is routed on path h, which is a
continuous variable given by pkh, and the total flow transported on
arc e, including the total amount of flow from all the commodities
on the arc, which is a continuous variable given by xe.

Owing to the nature of the problem described, numerous
concave cost functions can be considered. We used the objective
function given by ceðxeÞ ¼ de

ffiffiffiffiffi
xe

p
for arc e, where xe has been

previously explained and de means the per unit variable cost
corresponding to the arc. We selected this function because it
provides a widely acknowledged basis of analysis of scale econo-
mies' effect in transportation problems, and because it is taken as a
representative cost function very similar to many transportation
cost functions in practice (see detailed arguments in LeBlanc, 1976;
Larsson et al., 1994; Yan and Luo, 1999; and Altiparmak and
Karaoglan, 2008). The cost concave function is, therefore, a
differentiable function. Note that the objective function is used
to provide comparable numerical examples in the subsequent
results section. The selection of this function does not condition
the methodology and developed algorithm, because the objective
function only affects the procedure for the calculation of the
derivative providing numerical data.

As a result, the demand routing problem in multicommodity
flow networks with diversification constraints and concave costs
(MFDCC problem) can be formulated as:

Minimize ∑
eAE

ceðxeÞ

s.t.:

xe ¼ ∑
kAK

∑
hAΡðkÞ

γkϕehpkh; 8eAE ð1Þ

∑
hAΡðkÞ

pkh ¼ 1; 8kAK ð2Þ

pkhrδk ; 8hAΡðkÞ; kAK
xeZ0; pkhZ0 ð3Þ

Constraint (1) calculates the total amount of flow on the arc e;
constraint (2) ensures that the demand for every origin-
destination pair is met; and constraint (3) ensures that the
demand is routed along d1=δke alternative paths. Set Pd(k) repre-
sents all the feasible disjoint paths for each origin-destination pair.
The “disjoint” concept is important and can be weakly imposed on
the arcs or strongly imposed on the nodes. Here, we have chosen
the arc diversification concept because in most cases it is normally
only necessary to take this weak constraint into consideration.
Using an example from telecommunications (Cortés et al., 2001),
disjoint arcs can be used to model reality, since the optical cross-
connect (OXC) in an all-optical WDM mesh network is seldom
broke. The OXC is a device which switches an optical signal from
an incoming fibre to an outgoing fibre on the same wavelength. So,
constraint (3) is equivalent to

� pkhrδk; 8ði; jÞAh ; hAPdðkÞ; kAK , constraint for arc-dis-
joint paths

� pkhrδk; 8 jAh; hAPdðkÞ; kAK , constraint for node-dis-
joint paths

Depending on what is being considered and as explained
above, we are looking at constraints for arc-disjoint paths.

3. Kuhn Tucker conditions for the demand routing problem in
multicommodity flow networks with diversification
constraints and concave costs

Every solution verifying the necessary and sufficient Kuhn–
Tucker conditions of any problem will be the optimal solution of
problem. This fact is proven for linear or non-linear problems since
they are global optimality conditions. Additionally, duality theory
can be regarded as a particular case of the Kuhn–Tucker conditions
for linear problems. See classic theory such as Hillier and
Lieberman (1974), Nocedal and Wright (2006), Avriel (2003) for
detailed explanations on Kuhn–Tucker conditions. Appendix A
depicts a general overview on the Kuhn–Tucker necessary optim-
ality conditions and their detailed corresponding application to
MFDCC problem, and Appendix B depicts the equivalent general
overview and detailed application of the Kuhn–Tucker sufficient
optimality conditions to the MFDCC problem.

Next, we re-formulate MFDCC problem to specify the objective
function in terms of pkh variables. This can be done because pkh
and xe are inter-related by constraint (2). Therefore, constraint (2)
is included in the objective function to re-formulate the problem
and subsequently formulate the Kuhn–Tucker necessary optimal-
ity conditions

Minimize ∑
eAE

ceðxeÞ �Minimize CðxÞ �Minimize CðpÞ

s:t: :
γk� ∑

h A PðkÞ
pkh ¼ 0; 8kAK←μk ðfree multiplierÞ

pkh � δk � γk r0 ; 8h A PdðkÞ; 8kAK←vkh ðnon
�negative multiplierÞ
�pkh r 0; 8hAPdðkÞ; 8kAK←ukh ðnon� negative multiplierÞ

Kuhn–Tucker conditions state that all hAPdðkÞ and kAK can be
written as:

∂CðpÞ
∂pkh

�μk ¼ ukh�vkh
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