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a b s t r a c t

Cutting and packing problems involving irregular shapes, usually known as Nesting Problems, are common
in industries ranging from clothing and footwear to furniture and shipbuilding. Research publications on
these problems are relatively scarce compared with other cutting and packing problems with rectangular
shapes, and are focused mostly on heuristic approaches. In this paper we make a systematic study of the
problem and develop an exact Branch & Bound Algorithm. The initial existing mixed integer formulations are
reviewed, tested and used as a starting point to develop a new and more efficient formulation. We also study
several branching strategies, lower bounds and procedures for fixing variables, reducing the size of the
problem to be solved at each node. An extensive computational study allows us first to determine the best
strategies to be used in the Branch & Bound Algorithm and then to explore its performance and limits. The
results show that the algorithm is able to solve instances of up to 16 pieces to optimality.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nesting problems are two-dimensional cutting and packing
problems involving irregular shapes. These problems arise in a
wide variety of industries like garment manufacturing, sheet metal
cutting, furniture making and shoe manufacturing. The wide range
of applications implies many different variants of the problem. The
placement areas into which the pieces have to be packed or cut
can be rectangular, as in the case of materials provided in rolls, or
can have irregular shapes, as in the case of leather hides for
making shoes. This placement area can have a uniform quality or
different qualities depending on the region, including sometimes
defective parts that cannot be used for pieces. The pieces to be cut
can be described as polygons, convex or not, or can include curved
edges. Depending on the real application, the pieces can be rotated
freely, at specific angles only (901, 1801, …), or not rotated at all.
There may also be different objectives, usually involving the
minimization of the area required for cutting the pieces or the
maximization of the value of the pieces cut. Using the typology
proposed by Wäscher et al. (2007), nesting problems, in general,
are open-dimension problems with irregular pieces.

In this paper we consider a nesting problem in which we have
to arrange a set of two-dimensional irregular shapes without

overlapping in a rectangular stock sheet of a fixed width, where
the objective is to minimize the required length. We will consider
the pieces to be described as polygons, not necessarily convex,
which cannot be rotated.

The main difficulty of nesting problems is to ensure that the
pieces have a non-overlapping configuration. This question has been
studied extensively in recent years and there are several approaches
which determine when two polygons overlap. Bennell and Oliveira
(2008) give a tutorial on the different approaches which study the
geometry of nesting problems. The problem is NP-complete and as a
result solution methodologies predominantly utilize heuristics.

Pixel/Raster methods transform the continuous stock sheet
into a discrete grid represented by a matrix, and the position of each
piece adds a given coded value to each matrix element. Identifying
possible overlapping comes down to checking the matrix values.
There are three known codification schemes the first one proposed
by Segenreich and Braga (1986), the second one by Oliveira and
Ferreira (1993), and the last one by Babu and Babu (2001).

When pieces are represented (or approximated) using poly-
gons, there are tests for edge intersection and for point inclusion
that can be used for identifying overlapping (Konopasek, 1981;
Ferreira et al., 1998). The most widely used tool for checking
whether two polygons overlap is the No-Fit Polygon (NFP). It can
be used, along with the vector difference of the position of the two
polygons, to determine whether these polygons overlap, touch or
are separated, by conducting a simple test to identify whether the
resulting vector is inside the NFP. There are three approaches to
generating the NFP the orbiting algorithm by Mahadevan (1984),
improved by Burke et al. (2007); the Minkowski sums used by
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Milenkovic et al. (1991) and Bennell and Dowsland (2001); and the
decomposition into star-shaped polygons (Daniels et al., 1994) or
convex polygons (Watson and Tobias, 1999; Agarwal et al., 2002).

A more general tool that generalizes the NFP is the Phi-function.
Its purpose is to represent all the mutual positions of two polygons.
The Phi-functions for cutting and packing were conceived of and
applied by Stoyan et al. (2001, 2004), Scheithauer et al. (2005).
Bennell et al. (2010) provide a good explanation of how the
Phi-functions can be built, as well as some applications for them.

Many different heuristic and metaheuristic approaches have
been proposed for solving nesting problems. Simple heuristic rules
are used for building a solution step by step, placing one piece at a
time, using different placement procedures and different piece
sequences. Metaheuristic procedures are used for working with
complete solutions and modifying them iteratively in order to find
improvements.

Very few integer linear programming formulations have been
proposed to date. One of them appears in the Simulated Annealing
Algorithm proposed by Gomes and Oliveira (2006). In their
algorithm, they use a compaction phase in which they solve a
linear program which is a relaxation of a mixed-integer formula-
tion of the problem. A different approach, based on Daniels et al.
(1994) and Li (1994), is proposed by Fischetti and Luzzi (2009),
introducing the concept of slices which, for each pair of pieces,
partitions the region outside the corresponding NFP, that is the
region in which the second piece can be placed without over-
lapping the first piece.

The remainder of this paper is organized into five sections.
In Section 2 we describe the elements of the problem in detail,
including the NFP, as it will be the basic tool for developing our
formulation. Section 3 is devoted to the mixed integer linear
formulation. We review the Gomes and Oliveira (2006) approach
and introduce two new formulations, using the main ideas of the
Fischetti and Luzzi (2009) model. In Section 4 we present our own
Branch and Bound algorithm, describing several branching strate-
gies, lower bounds and variable-reduction procedures. Section 5
contains an extensive computational experiment, using known
and new test instances, which allows us to compare the proposed
alternatives and the overall efficiency of the algorithm. Finally, in
Section 6, we draw some conclusions and outline future work.

2. The problem

Let P ¼ fp1;…; pNg be the set of pieces to arrange in the strip.
We consider the reference point of each piece to be the bottom-
left corner of the enclosing rectangle. We denote the coordinates
of the reference point of piece pi by ðxi; yiÞ, its length by li and its
width by wi (see Fig. 1). The dimensions of the strip are its width
W (fixed) and its length L (to be determined). We consider the
bottom-left corner of the strip to be placed at the origin.

For each pair of pieces, pi and pj, the No-Fit Polygon, NFPij, is the
region in which the reference point of piece pj cannot be placed
because it would overlap piece pi. The feasible zone to place pj
with respect to pi, outside NFPij, is a non-convex polygon or it
could be unconnected. Fig. 2 shows a simple case in which piece i
is a square and piece j a triangle. To build NFPij, the reference point
of piece i is placed at the origin and the reference point of piece j
slides around piece i in such a way that one point of piece j is
always touching the border of piece i. The left-hand side of Fig. 2
shows several positions of piece j moving around piece i. The
right-hand side of the figure shows NFPij, the forbidden region for
the reference point of piece j, relative to piece i, if no overlapping is
allowed.

When one or both polygons are non-convex, building the NFP
is more complex. Fig. 3, taken from Bennell and Oliveira (2008),

shows more complicated cases. In Fig. 3(a), piece B has some
feasible positions within the concavity of A and therefore NFPAB
includes a small triangle of feasible placements for the reference point
of B. In Fig. 3(b), the width of B fits exactly into the concavity of A and
its feasible positions in the concavity produce a segment of feasible
positions for the reference point of B in NFPAB. In Fig. 3(c), there is
exactly one position in which B fits into the concavity of A and then
NFPAB includes a single feasible point for the reference point of B. The
methods mentioned in the previous section are powerful enough for
building the NFP in all possible cases. In this paper we assume that
for each pair of pieces i, j, NFPij is given by a polygon plus, if necessary,
some points (as in Fig. 3(c)), some segments (as in Fig. 3(b)) or some
enclosed polygons (as in Fig. 3(a)).

3. Mixed integer formulations

In this section we will first describe the formulation used by
Gomes and Oliveira (2006) and then our two proposals, based on
the ideas of Fischetti and Luzzi (2009). In all cases, the objective
function will be the minimization of L, the strip length required to
accommodate all the pieces without overlapping. Also, all formu-
lations contain two types of constraints those preventing the
pieces from exceeding the dimensions of the strip and those
forbidding the pieces from overlapping. The differences between
formulations lie in the way these constraints are defined.

3.1. Formulation GO (Gomes and Oliveira)

Let us consider the simple example in Fig. 4. Pieces pi and pj are
rectangles, and then NFPij is a rectangle. Associated with each edge
of NFPij, a binary variable vijk is defined. Variable vijk takes
value 1 if the reference points of piece j and piece i are on
different sides of the line defined by the kth edge of NFPij, or the
reference point of piece j even being on that line, otherwise it

Fig. 1. Reference point of piece pi.

Piece moves around

Fig. 2. Building the NFP of pieces i and j.

Fig. 3. Special cases of NFP when non-convex pieces are involved.
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