
Application of a hybrid MPI/OpenMP approach for parallel groundwater
model calibration using multi-core computers

Guoping Tang a,n, Eduardo F. D’Azevedo b, Fan Zhang c, Jack C. Parker d,
David B. Watson a, Philip M. Jardine e

a Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
b Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, MS-6367, Oak Ridge, TN 37831-6367, USA
c Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
d Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
e Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996, USA

a r t i c l e i n f o

Article history:

Received 1 October 2009

Received in revised form

5 February 2010

Accepted 10 April 2010

Keywords:

Reactive transport

Coupled flow and transport

Levenberg–Marquardt algorithm

Profile

Cache

a b s t r a c t

Calibration of groundwater models involves hundreds to thousands of forward solutions, each of which

may solve many transient coupled nonlinear partial differential equations, resulting in a computa-

tionally intensive problem. We describe a hybrid MPI/OpenMP approach to exploit two levels of

parallelisms in software and hardware to reduce calibration time on multi-core computers.

HydroGeoChem 5.0 (HGC5) is parallelized using OpenMP for direct solutions for a reactive transport

model application, and a field-scale coupled flow and transport model application. In the reactive

transport model, a single parallelizable loop is identified to account for over 97% of the total

computational time using GPROF. Addition of a few lines of OpenMP compiler directives to the loop

yields a speedup of about 10 on a 16-core compute node. For the field-scale model, parallelizable loops

in 14 of 174 HGC5 subroutines that require 99% of the execution time are identified. As these loops are

parallelized incrementally, the scalability is found to be limited by a loop where Cray PAT detects over

90% cache missing rates. With this loop rewritten, similar speedup as the first application is achieved.

The OpenMP-parallelized code can be run efficiently on multiple workstations in a network or multiple

compute nodes on a cluster as slaves using parallel PEST to speedup model calibration. To run

calibration on clusters as a single task, the Levenberg–Marquardt algorithm is added to HGC5 with the

Jacobian calculation and lambda search parallelized using MPI. With this hybrid approach, 100–200

compute cores are used to reduce the calibration time from weeks to a few hours for these two

applications. This approach is applicable to most of the existing groundwater model codes for many

applications.

Published by Elsevier Ltd.

1. Introduction

Fate and transport of contaminants in the subsurface are
controlled by coupled hydrological, geochemical and biological
processes. HydroGeoChem 5.0 (HGC5), a three-dimensional
model for fluid flow, thermal and solute transport, and biogeo-
chemical kinetic/equilibrium reactions in saturated/unsaturated
porous media (Yeh et al., 2004, 2010), is widely used to
investigate contaminant migration at Department of Energy Oak
Ridge Integrated Field-scale Subsurface Research Challenge
(ORIFRC) site (http://www.esd.ornl.gov/orifrc/) in Tennessee
(Zhang et al., 2008a) and other sites (Scheibe et al., 2009; Mayes
et al., 2009). Simulations with HGC5, as well as other groundwater

model codes, are often computationally intensive, particularly
when multiple processes are coupled with many biogeochemical
reactions. The computational time increases substantially when
temporal and spatial discretization need to be refined to ensure
convergence and accuracy for long-term simulations over large
spatial domains.

The time increases further for inverse solutions to identify and
quantify multiple processes (Gwo and Yeh, 1997; Zhang et al.,
2008a). The Levenberg–Marquardt (LM) algorithm, which is
widely used for model calibration, involves an iterative solution
based on a gradient search procedure. Each iteration requires
2N+1 forward model runs to compute the Jacobian matrix, when
it is approximated by a central difference or N+1 if a forward
difference is used, where N is the number of calibrated
parameters (Doherty, 2004). Depending on N, initial parameter
values, and nonlinearity, dozens of iterations may be required to
achieve convergence, and multiple calibration runs may be

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter Published by Elsevier Ltd.

doi:10.1016/j.cageo.2010.04.013

n Corresponding author. Tel.: 1 865 574 7314; fax: 1 865 576 8646.

E-mail address: tangg@ornl.gov (G. Tang).

Computers & Geosciences 36 (2010) 1451–1460

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2010.04.013
mailto:tangg@ornl.gov
dx.doi.org/10.1016/j.jhydrol.2009.07.063


needed to avoid local minima in the objective function. Further
consideration of hybrid local/global (Sayeed and Mahinthakumar,
2005), global optimization (Vrugt et al., 2008), uncertainty
analysis and multi-model comparison (Tang et al., 2009) can
involve thousands of forward runs, making parallel computing
necessary.

While High Performance FORTRAN was used for 3DMURF and
3DMURT (D’Azevedo and Gwo, 1997), PFEM (West and Toran,
1994) and PHGC3D (Gwo and Yeh, 1997), Open specifications for
Multi-Processing (OpenMP) and Message-Passing Interface (MPI)
have since emerged as the standard parallelization paradigms.
OpenMP is easy to program, and facilitate increment paralleliza-
tion. It was used to parallelize HBGC123D (Gwo et al., 2001), RT3D
(McLaughlin, 2008), and PCG solver in MODFLOW (Dong and Li,
2009). Reasonable OpenMP performance for many single-core
processors (i.e., cores) on shared-memory parallel computers
(SMP), for example, 32 in Gwo et al. (2001), 64 in Hoeflinger et al.
(2001) and Chapman et al. (2008), and 144 in Brown and
Sharapov (2007), are reported in the literature. While the effort
for each parallelization increment may not decrease, the speedup
return diminishes as more increments are parallelized, reaching a
‘‘point of diminishing returns’’ (Hoeflinger et al., 2001). OpenMP
was originally designed for expensive SMPs, and the scalability is
limited by memory bandwidth.

MPI is widely used to parallelize existing software (TOUGH,
Zhang et al., 2008b) and to develop new software, e.g., PARFLOW
(Ashby et al., 1994) and PFLOTRAN (Mills et al., 2007), to run on
massively parallel computers with hundreds of cores for TOUGH
and thousands of cores for PFLOTRAN. Due to excellent scalability
potential, distributed computers and MPI have been replacing
SMPs and OpenMP for large-scale applications. However, MPI
requires users to rewrite a serial code into a domain decomposed
program (Zhang et al., 2008b).

Since the release of the first dual-core processor by IBM in 2001,
Sun in 2004, and AMD in 2005 (Terboven et al., 2008), more and
more (2–8) cores are built into a single processor with the
development of multi-core technology. A workstation or a compute
node on a cluster may have 2–4 multi-core processors with
OpenMP support. OpenMP can be used to parallelize HGC5, as well
as other codes, to utilize 8–16 cores on a compute node. Since
multiple slaves can run on multiple workstations in a network, or
multiple compute nodes on a cluster, parallel PEST (a parallel
version of the widely used parameter estimation code, Doherty,
2004) can be used to utilize multiple compute nodes/workstations
for model calibration. However, the number of slaves that can run
simultaneously on a cluster, which is often shared by many users,
is limited by its schedule policy. Embedding MPI-parallelized LM in
HGC5 will enable model calibration to be run on clusters as a single
job, reduce startup overhead for forward runs (Sayeed and
Mahinthakumar, 2005), and eliminate the need for shared storage
and associated I/O for slaves in parallel PEST. This hybrid MPI/
OpenMP approach exploits two levels of parallelisms in software
(coarse-grained parallelism in Jacobian calculation and lambda
search in LM and fine-grained parallelism in HGC5) and in
hardware (compute nodes with multiple cores). As a result,
multiple compute nodes can be used efficiently for model
calibration, while the ease of use of OpenMP is exploited. While
hybrid MPI/OpenMP was used to exploit the coarse- and fine-
grained parallelisms in a transport code (e.g., Mahinthakumar and
Saied, 2005), as well as in multilevel parallelization of an inverse
code (Sayeed and Mahinthakumar, 2005), we use pure OpenMP for
the forward solution for ease of use and MPI-parallelized LM to
extend the scalability to multiple compute nodes.

The objective of this work is to parallelize HGC5 using OpenMP
and add MPI-parallelized LM to speedup groundwater calibration
on clusters. We choose two ongoing simulations at ORIFRC for

discussion. The first is a reactive transport simulation with 4100
species and �100 reactions. The second involves simulation of
field-scale coupled flow and nitrate transport. As OpenMP was
used to parallelize groundwater model codes (Gwo et al., 2001),
its application was relatively limited due to scalability limitation
and limited access to SMPs. With the development of multi-core
technology in the past several years, the interest in OpenMP has
increased significantly (McLaughlin, 2008; Dong and Li, 2009).
There is now great need to understand how OpenMP can be easily
applied to speedup groundwater model computing efficiently on
multi-core computers. We will address this need by describing
how performance tools are used to facilitate the identification of
the most time-consuming parallelizable loops and performance
bottlenecks to minimize parallelization effort, while maximizing
speedup. While previous efforts attempted to parallelize their
codes for general applications (Gwo et al., 2001), we will focus on
our two specific applications to illustrate that different applica-
tions can have very different parallelisms, therefore, involves
different parallelization strategies and efforts, and to show the
strength and limitation of OpenMP and the hybrid approach for
different groundwater model applications. We hope that our work
provides useful information for groundwater modelers to use
multi-core computers to improve the efficiency of groundwater
modeling effort.

2. Method

2.1. Parallelization using OpenMP

HGC5 solves head-based Richards equation for flow, the
convection dispersion equation (CDE) for transport, heat equation
for thermal transport, and mixed kinetic/equilibrium geochemical
reaction equations. The Galerkin finite element and finite
difference are used for spatial and temporal discretization. The
nonlinear algebraic/ordinary differential equations for reactions
are linearized by Newton–Raphson method, and solved by Gauss
elimination with full pivoting. The flow, transport, heat transfer
and reaction equations can be coupled (Yeh et al., 2004, 2010).

According to the Amdahl’s law (Chapman et al., 2008), the
possible speedup is approximately

S¼
1

f=nþ1�f
, ð1Þ

where f is the fraction of the time spent in the parallelized portion
of the code when it is run in serial, and n is the number of cores. If
one subroutine takes 95% of the time, parallelization of this
subroutine may yield a speedup of about 9 on a 16-core compute
node. As more cores are used, the speedup approaches an
asymptotic value of 1/(1� f), e.g., 20 in the foregoing case.
Because of overhead involved in starting up OpenMP library and
threads, and waiting for synchronization among different cores
(load imbalance), memory coherence maintenance and memory
bandwidth limitation, the actual speedup is less than what is
predicted by Eq. (1).

While HGC5 consists of a main routine, 174 subroutines and
2 functions (Yeh et al., 2004), only some subroutines, for example,
finite element assembly, solver, particle tracking, and reaction
equations (Gwo et al., 2001), material properties updating (Zhang
et al., 2008b), consume most of the computational time, depending
on the application. To maximize speedup and minimize effort, we
profile (Chapman et al., 2008) the code for the specific application
to identify the subroutines (loops) that take most of the time.
Optimizing these loops may result in speedup even for a run in
serial. Adding OpenMP compile directives to parallelize these loops
can yield speedup for run on parallel computers. This is mostly

G. Tang et al. / Computers & Geosciences 36 (2010) 1451–14601452



Download English Version:

https://daneshyari.com/en/article/508033

Download Persian Version:

https://daneshyari.com/article/508033

Daneshyari.com

https://daneshyari.com/en/article/508033
https://daneshyari.com/article/508033
https://daneshyari.com

