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a b s t r a c t

A sequential grouping heuristic (SGH) that supports parallel computing is presented for solving the two-
dimensional cutting stock problem with pattern reduction, where a set of rectangular items with given
demand are cut from rectangular stock plates of the same size, considering both input-minimization
(main objective) and pattern reduction (auxiliary objective). It is based on the sequential heuristic
procedure that generates each next pattern to fulfill some portion of the remaining items and repeats
until all items are fulfilled. The SGH uses a grouping technique to select the items that can be used to
generate the next pattern, and adjusts the item values according to the sequential value correction
method after the next pattern is generated. Each next pattern is generated using a dynamic programming
recursion. The computational results indicate that the SGH is powerful in both input-minimization and
pattern reduction, and the parallel computing is useful to reduce computation time.

& 2013 Published by Elsevier B.V.

1. Introduction

In the general two-dimensional cutting stock problem (2DCSP),
a set of rectangular item types with given size and demand are cut
from rectangular stock plates of the same size, such that the plate
count is minimized (input-minimization). The formal term for the
2DCSP is the two-dimensional rectangular single stock size cutting
stock problem (Wäscher et al., 2007). The solution of the 2DCSP is
a cutting plan that contains a set of cutting patterns. Each pattern
is specified with a frequency and the numbers of each item type
included. The included items should not overlap and the pattern
should be feasible for the cutting process.

Restrictions and objectives with practical backgrounds are
often addressed in solving cutting stock problems (Arbib et al.,
2012; Erjavec et al., 2012). Although the main objective in solving
the 2DCSP is input-minimization, it is necessary to reduce the
pattern count (pattern reduction) of the cutting plan for some
applications. Pattern reduction is useful at least for the following
aspects:

1. Each pattern is often related with a setup cost in the cutting
process. Pattern reduction is useful to reduce the total
setup cost.

2. For some industries (such as the wood and furniture indus-
tries), sheets of the same pattern may be piled to cut. Pattern

reduction can lead to lower cutting cost because the number of
piles can be reduced.

This paper considers the following two-dimensional guillotine
cutting stock problem with pattern reduction (2DCSPPR):
m rectangular item types with given demand are cut from
rectangular stock plates of size L⊗W (length⊗width) using guillo-
tine cuts, where the main objective is input-minimization, the
auxiliary objective is pattern reduction, and the two objectives are
considered in priority mode. The length, width and demand of
type-i items are li, wi and di, respectively. The items are orientated,
that is, an item can only be placed with the length in horizontal
orientation. Let N be the pattern count of the cutting plan, Pj be
the jth pattern that contains pij type-i items, xj be the frequency of
Pj, and Ω be the set of non-negative integers. The solution to the
2DCSP can be determined from solving the following integer
programming formulation:

Z ¼min∑N
j ¼ 1xj; ∑N

j ¼ 1pijxj ¼ di; i¼ 1,…,m; xj∈Ω; j¼ 1,…,N

Although exact methods can be used to solve the general
2DCSP, it may be difficult for them to consider multiple objectives
and constraints, especially when the instance scale is large.
A sequential grouping heuristic (SGH) is presented in this paper.
It is based on the sequential heuristic procedure (SHP) that
generates each next pattern to fulfill some portion of the remain-
ing items and repeats until all items are fulfilled. The SGH adjusts
the item values according to the sequential value correction
method (Belov and Scheithauer, 2007), and uses a grouping
technique to select the items that can be used in generating the
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next pattern. Simple block patterns (Cui, 2007a) are used and a
heuristic is presented for generating them. The SGH is extended to
support parallel computing. The computational results indicate
that the SGH is powerful in both input-minimization and pattern
reduction.

The literature is reviewed in Section 2. Simple block patterns
are introduced and a heuristic for generating them is presented in
Section 3. The SGH is described in Section 4. The computational
results are reported in Section 5, followed by the conclusions in
Section 6.

Notations and abbreviations used across sections/sub-sections
are listed in Appendix for quick reference. They are also introduced
where they appear the first time in this paper.

2. Literature review

There are mainly three deterministic approaches for the 2DCSP.
The first approach includes algorithms based on linear program-
ming (LP), where the decision variables are the frequencies of the
patterns. A computational study of LP-based heuristic algorithms
is available in Alvarez-Valdes et al. (2002). It follows the column
generation scheme in which at each cycle of the iteration, a new
cutting pattern is generated as the solution of a sub-problem on
one stock plate. In their work, three heuristic procedures of
increasing complexity are used to solve the sub-problem, produ-
cing solutions differing in quality and computation time. Different
rounding procedures are also compared to obtain integer frequen-
cies of the patterns from the fractional solutions of the LP
approach.

The work in Cintra et al. (2008) also uses several procedures to
solve the sub-problem. The fractional frequencies of the patterns
are round down to obtain integer solutions and two strategies are
provided to tackle the residual instances. Vanderbeck (2001)
presented a LP-based approach, where homogenous three-staged
patterns (Cui, 2008) are used. The approach involves a nested
decomposition of the problem and the recursive use of the
column-generation technique.

The second approach is based on integer programming (IP).
Belov and Scheithauer (2006) presented a branch-and-cut-and-
price algorithm for the 2DCSP with two-staged patterns.
The solution approach strengthens the LP relaxation at each
branch-and-price node with mixed-integer cuts. The effectiveness
of the approach is demonstrated through tests.

An integer programming model for the 2DCSP is available in
Silva et al. (2010), where two- and three-staged patterns are used.
The construction and optimization of the proposed model were
implemented in Cþþ using the C callable library of the ILOG Cplex
11.0 solver.

An integer linear programming arc-flow model for the 2DCSP
with two-staged patterns is available in Macedo et al. (2010),
formulated as a minimum flow problem. It is an extension of the
arc-flow model proposed by Valério de Carvalho (1999) for the
one-dimensional cutting stock problem (1DCSP). The model was
also solved with ILOG Cplex 11.0 solver.

The third approach is based on the SHP that generates the
patterns in the cutting plan sequentially. It is welcomed because of
its ability to control and consider factors (objectives and con-
straints) other than input-minimization. Although this type of
algorithms has been widely used to solve the 1DCSP (Belov and
Scheithauer, 2007; Cui and Liu, 2011), they have not been used
frequently to solve the 2DCSP. The authors have not found one that
solves the 2DCSPPR. Yanasse et al. (1991) presented a SHP for
a cutting stock problem in the wood industry, where there are
several different board sizes from which panels can be cut.
Suliman (2006) presented a SHP for the case where rolls are used

to produce the items, and the patterns belong to a simple type:
one-stage homogenous strip cutting patterns (Cui and Yang, 2010).
No computational results are reported except the solution to an
illustrative example. An iterative SHP to a real-life cutting stock
problem arising in a make-to-order plastic company is available in
Song et al. (2006). The plates have different lengths and the same
width. Customers may want items longer than the available plate
length. Instead, several smaller ones are offered so that the total
length of the items satisfies the demand.

It is difficult to find journal papers that deal with the 2DCSPPR.
Imahori et al. (2005) presented a local search algorithm for the
2DCSPn (a special case of the 2DCSPPR) in a book chapter, where
the plate count of the cutting plan should be minimized, observing
the constraint that the pattern count must not exceed n.

To solve the 2DCSPPR, each pattern in the cutting plan should
be generated from solving the bounded SLOPP (Single Large Object
Placement Problem), in which a set of rectangular items are to be
arranged on the stock plate without overlap, such that the pattern
value (the total value of the included items) is maximized, where
the frequency of each item type should not exceed the upper
bound. Most algorithms assume that guillotine cuts are necessary
to divide the plate into items. A guillotine pattern can be either
general or restricted. The former considers only the restriction of
the guillotine cuts. The latter observes both the guillotine cuts and
other restrictions. The restricted patterns may be classified into
two types. Patterns of the first type are established to simplify the
cutting process. Two-staged, three-staged, T-shape and n-group
patterns are among them. Patterns of the second type are
proposed to simplify the design of the pattern-generation proce-
dure and to reduce the solution space to make the computation
time affordable. The simple block patterns used in this paper
belongs to this type.

Exact algorithms for general guillotine patterns are available in
Wang (1983), Viswanathan and Bagehi (1993), Daza et al. (1995),
Hifi (1997), Cung et al. (2000), and Amaral and Wright (2001).
They are often not practical for solving medium and large
instances because of the long computation time.

Exact and heuristic algorithms for the first type of restricted
patterns have been reported intensively. Hifi and Roucairol (2001),
Hifi (2005), Hifi and M’Hallah (2006), Hifi et al. (2008), and Hifi
et al. (2012) presented both exact and heuristic algorihtms for
two-staged patterns. Cui (2012a) described a heuristic for T-shape
patterns. He also published exact or heuristic algorithms for
homogenous two-segment patterns (Cui, 2007b) and homogenous
three-staged patterns (Cui, 2008), where a homogenous strip
contains only items of the same size. Yanasse et al. described
algorithms for one-group patterns (Yanasse and Morabito, 2006),
two- and three-group patterns (Yanasse and Morabito, 2008), and
checkerboard patterns (Yanasse and Katsurayama, 2008).

Other heuristic algorithms for solving the two-dimensional
bounded SLOPP generate the second type of restricted patterns,
if the geometric feature of the patterns is specified to reduce the
solution space and to facilitate the design of the algorithms.
The pattern-generation procedure of this paper is among them.
The exact algorithm for the two-dimensional unbounded SLOPP in
Cui (2007a) generates simple block patterns, where the computa-
tional results of 41 benchmark instances indicate that simple block
patterns may lead to material utilization better than that of three-
staged patterns and their variants. This is a reason to use simple
block patterns in this paper. Another reason is that the pattern-
generation procedure is simple and easy to code. This is helpful to
practical applications.

Algorithms for solving the 1DCSP with pattern reduction
(1DCSPPR) will be briefly reviewed in this paper. More detailed
reviews are available in Cerqueira and Yanasse (2009), and Cui and
Liu (2011). Vanderbeck (2000) formulated the problem as a
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