
Real-time tessellation of terrain on graphics hardware

Oscar Ripolles a,n, Francisco Ramos b, Anna Puig-Centelles b, Miguel Chover b

a Universitat Politecnica de Valencia, Valencia, Spain
b Universitat Jaume I, Castellón, Spain

a r t i c l e i n f o

Article history:

Received 21 February 2011

Received in revised form

15 July 2011

Accepted 19 August 2011
Available online 10 September 2011

Keywords:

Terrain simulation

Tessellation

Level of detail

Real-time rendering

GPU

a b s t r a c t

Synthetic terrain is a key element in many applications, which can lessen the sense of realism if it is not

handled correctly. We propose a new technique for visualizing terrain surfaces by tessellating them on

the GPU. The presented algorithm introduces a new adaptive tessellation scheme for managing the

level of detail of the terrain mesh, avoiding the appearance of t-vertices that can produce visually

disturbing artifacts. Previous solutions exploited the geometry shader’s capabilities to tessellate meshes

from scratch. In contrast, we reuse the already calculated data to minimize the operations performed in

the shader units. This feature allows us to increase performance through smart refining and coarsening.

Finally, we also propose a framework to manage large DEMs as height maps.

& 2011 Published by Elsevier Ltd.

1. Introduction

In recent years the research area of procedural modeling has
been the focus of much effort. The latest work tries to take
advantage of the new graphics hardware technology, making it
possible for the geometry to be generated at rendering time in the
graphics card itself. Thus, instead of specifying the details of a 3D
object, we provide some parameters for a procedure that will
create the object.

In the field of computer graphics, tessellation techniques are often
used to divide a surface into a set of polygons. Thus, we can tessellate
a polygon and convert it into a set of triangles or we can tessellate a
curved surface. These approaches are typically used to amplify coarse
geometry. Programmable graphics hardware has enabled many sur-
face tessellation approaches to be migrated to the GPU, including
isosurface extraction (Buatois et al., 2006), subdivison surfaces (Shiue
et al., 2005), NURBS patches (Guthe et al., 2005), and procedural detail
(Bokeloh and Wand, 2006; Boubekeur and Schlick, 2005). In this
paper we analyze the possibilities offered by GPU-based tessellation
techniques for terrain visualization.

For many decades terrain simulation has been the subject of
research, and there are many solutions in the literature to its
realistic and interactive rendering. Most of these solutions simu-
late terrain as an unbounded surface that is represented in the
synthetic environment as a height map, which is a regularly

spaced two-dimensional grid of height coordinates. These grids
can later be processed by modeling software or a rendering
engine to obtain the 3D surface of the desired terrain.

Some authors have criticized the use of height fields, as these
data structures store only one height value for any given (x,y) pair.
In specific cases such as caves or complex terrain formations, it
may be possible to have more than one height value for each
position. We will not consider these complex formations and,
thus, the use of a squared height map will still be adequate.

We introduce a new adaptive tessellation scheme for terrain
that works completely on the GPU. The main feature of the
framework that we are presenting is the possibility of refining
or coarsening the mesh while maintaining coherence. By coher-
ence we refer to the reuse of information between changes in the
level of detail. In this way, the latest approximation extracted is
used in the next step, optimizing the tessellation process and
improving performance. We also propose a simple framework to
manage large terrains using height maps.

The rest of the paper is structured as follows. Section 2
presents the state of the art in terrain simulation. Section 3
thoroughly describes our tessellation technique. Section 4 offers
some results on the technique presented and, last, Section 5
presents some conclusions on the techniques developed and
outlines future work.

2. Related work

Digital terrain models (DTMs) are usually represented and
managed by means of regular or irregular grids. The reader is

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter & 2011 Published by Elsevier Ltd.

doi:10.1016/j.cageo.2011.08.025

n Corresponding author. Tel.: þ34 963877000x88442.

E-mail addresses: oripolles@ai2.upv.es (O. Ripolles),

francisco.ramos@uji.es (F. Ramos), apuig@uji.es (A. Puig-Centelles),

chover@uji.es (M. Chover).

Computers & Geosciences 41 (2012) 147–155

www.elsevier.com/locate/cageo
www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2011.08.025
mailto:oripolles@ai2.upv.es
mailto:francisco.ramos@uji.es
mailto:apuig@uji.es
mailto:chover@uji.es
dx.doi.org/10.1016/j.cageo.2011.08.025


referred to recent surveys for a more in-depth review of these
methods (Pajarola and Gobbetti, 2007; Rebollo et al., 2004).

2.1. Regular grids

The most common regular structures are quadtrees and binary
trees (bintrees). These structures with regular connectivity are
suitable for terrain, as the input data usually come as a grid of
values. Regular approaches have produced some of the most
efficient systems to date (Pajarola and Gobbetti, 2007).

Quadtrees are found in the literature in many papers with
CPU-based solutions (Lindstrom et al., 1996; Pajarola, 1998) as
well as GPU-based approximations (Schmiade, 2008). This latter
approach proposed a tessellation algorithm on the GPU, although
the pattern selection process was very complex.

The ROAM method (real-time optimally adapting meshes)
(Duchaineau et al., 1997) is a widely known method based on
the use of bintrees. They use two priority queues to manage split
and merge operations, obtaining high accuracy and performance.
As an attempt to improve this solution, in Apu and Gavrilova
(2004) the authors eliminated the priority queue for merges to
exploit frame-to-frame coherence.

Some authors proposed using bintrees where each node
contains, instead of a single triangle, a patch of triangles
(Levenberg, 2002; Pomeranz, 2000). Algorithms such as (Cignoni
et al., 2003; Schneider and Westermann, 2006) batched the
triangular patches to the graphics hardware. The batched
dynamic adaptive mesh (BDAM) proposed in Cignoni et al.
(2003) used triangle strips to increase performance, although it
was based on complex data structures and costly processes that
still produced popping artifacts. From a different perspective;
Larsen and Christensen (2003) used patches of quads to manage
terrain rendering on the GPU. Later Schneider and Westermann
(2006) reduced bandwidth requirements by simplifying the mesh
and using progressive transmission of geometry. Recently, in
Bosch et al. (2009) the authors proposed the use of precalculated
triangle patches to develop a GPU-intensive solution.

The projected grid concept offered an alternative way to
render displaced surfaces with high efficiency (Johanson, 2004).
The idea was to create a grid with vertices that were evenly
spaced in post-perspective camera space. This representation
provided spatial scalability and a fully GPU-based implementa-
tion was described. Schneider et al. (2006) used the projective
grid method to render infinite terrain in high detail. They
generated the terrain in real time on the GPU by means of
fractals. The work in Livny et al. (2008) proposed using ray
tracing to guide the sampling of the terrain, this being a technique
able to produce both regular and irregular meshes.

As an improvement over binary trees, Losasso and Hoppe (2004)
introduced geometry clipmaps, caching the terrain in a set of nested
regular grids. These grids were stored as vertex buffers, and mipmap-
ping was applied to prevent aliasing. As vertex buffers cannot be
modified on the GPU, this approach was later improved by using
vertex textures to avoid having to use the CPU to modify the grids
(Asirvatham and Hoppe, 2005). This work was also extended to
handle spherical terrains (Clasen and Hege, 2006).

Last, it is worth mentioning that bintree hierarchies are also
useful for decompressing terrain surfaces on the GPU. In this
sense, Lindstrom and Cohen (2010) presented a fast, lossless
compression codec for terrains on the GPU and demonstrated
its use for interactive visualization.

2.2. Irregular grids

Irregular grids are commonly known as TINs (triangulated
irregular networks) and represent surfaces through a polyhedron

with triangular faces. These solutions are less constrained triangula-
tions of the terrain and, in general, need fewer triangles, although
their algorithms and data structures tend to be more complex.

Hoppe (1998) proposed specializing his view-dependent pro-
gressive mesh (VDPM) framework for arbitrary meshes that repre-
sent terrain. With more intense GPU exploitation, Dachsbacher and
Stamminger (2004) proposed a costly procedural solution that needs
three rendering passes to obtain the geometry.

Delaunay triangulation is one of the main techniques used to
create the terrain mesh. In computational geometry, a Delaunay
triangulation for a set of points is a triangulation where no point
is inside the circumcircle (circle that passes through all the
vertices of the triangle) of any generated triangle (Delaunay,
1934). This triangulation has been widely used in terrain solu-
tions (De Berg et al., 2008; Rabinovich and Gotsman, 1997). The
main problem with Delaunay triangulation is that it relies on
smoothing morphing between two triangulations generated in
two successive frames, but the triangulations may be very
different. As an improvement, Cohen-Or and Levanoni (1996)
proposed a solution that involved blending between two levels of
Delaunay triangulation without adding more triangles. More
recently, Liu et al. (2010) proposed a new technique where points
from a DEM are initially given an importance value in order to
guide adaptive triangulation in real time. Their proposal allowed
smooth morphing and tried to eliminate very small triangles that
could produce visual disturbances.

As a conclusion, we can note that techniques based on
irregular grids tend to be more complex and less suitable for
GPU computations.

3. Our GPU-based tessellation scheme

In this paper we propose a new adaptive tessellation algorithm
that works completely on the GPU. Moreover, this algorithm is
able to offer view-dependent approximations where more detail
is added in areas of interest. Our algorithm will be based on
bintrees, creating the hierarchy on the GPU using some specific
equations. As mentioned above, there have been other proposals
with similar aims, although our scheme is easier to implement,
while still robust and efficient.

A successful tessellation algorithm is based on the selection of
the most suitable tessellation patterns to amplify the triangles.
These patterns affect the algorithm chosen to refine and coarsen
the geometry. As our aim is to process the mesh in a geometry

shader, each triangle is to be processed separately and in parallel.
Thus, it will be necessary to develop a technique to alter the
geometry of the different triangles without any communication
between them. Moreover, the algorithms must ensure that no
cracks or holes appear on the surface mesh.

In the remainder of this section, we will address the selection
of the patterns and also the algorithms to manage the terrain
surface.

3.1. Tessellation patterns

It is possible to find different proposals of tessellation patterns
in the literature. Among them, we have selected the seven
patterns presented in Schmiade (2008). Fig. 1 presents, on the
left side, an initial rectangular triangle whose hypotenuse and
catheti (or legs) are labeled as H, C1, and C2 respectively. Next,
the seven tessellation patterns are presented, with the edges of
the original triangle that need refinement depicted in red.

These patterns ensure that no t-vertices are produced. A
t-vertex appears after a tessellation step when two edge junctions
make a t-shape (McConnell, 2006). To clarify the appearance of

O. Ripolles et al. / Computers & Geosciences 41 (2012) 147–155148



Download English Version:

https://daneshyari.com/en/article/508049

Download Persian Version:

https://daneshyari.com/article/508049

Daneshyari.com

https://daneshyari.com/en/article/508049
https://daneshyari.com/article/508049
https://daneshyari.com

