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a b s t r a c t

We consider a single item assembled from two components. One of the components has a long lead

time, high holding cost and short review period as compared to the other one. We assume that net

stocks are reviewed periodically, customer demand is stochastic and unsatisfied demand is back-

ordered. We analyze the system under two different policies and show how to determine the policy

parameters that minimize average holding and backorder costs. First, we consider a pure base stock

policy, where orders for each component are placed such that the inventory position is raised up to a

given base stock level. In contrast to this, only the orders for one component follow this logic while the

other orders are synchronized in case of a balanced base stock policy. Through mathematical analysis,

we come up with the exact long-run average cost function and we show the optimality conditions for

both policies. In a numerical study the policies are compared.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

In real-life supply chains, individual items have their own lot
sizing and lead time constraints based on contracts with suppliers
or production process characteristics. Coordination of release
decisions across multiple items is thereby not an easy task. In
the existing literature, convenient assumptions are made, such as
equal lot sizes for items (e.g. Svoronos and Zipkin, 1988), equal
review periods (e.g. Clark and Scarf, 1960), nested lot sizes (e.g.
Chen, 2000) and nested review periods (e.g. Van Houtum et al.,
2007). One of the consequences of these assumptions is that
upstream items and long-lead-time items should have larger lot
sizes. Unfortunately, in practice, simple and cheap materials can
have short lead times whereas complex and expensive materials
usually have long lead times. On top of that the economic order
quantity of complex and expensive items implies that such items
should be ordered more frequently than cheap items if they have
equal demand rates.

Whether an item is cheap or expensive is generally deter-
mined by the complexity and capital intensity of the production
processes. Complex processes consisting of multiple transforma-
tion steps require longer lead times. On the other hand, capital-
intense production is characterized by high utilization, which
naturally translates into long lead times. Thus, in practice long-
lead-time items are often more expensive than short-lead-time
items. Typical examples of this situation can be observed in high

volume electronics and pharmaceutics industry, where key com-
ponents (e.g. LED screens, active ingredients) have lead times
beyond 10 weeks, whereas cheap components (e.g. plastic parts,
packaging material) have lead times of less than several weeks.
Similarly, in capital goods industry, where typically products are
assembled to order, expensive items (e.g. magnets for medical
scanning equipment, lenses for lithography machines) are
ordered daily or weekly, while metal and plastic parts may be
ordered monthly on average. Such lead time and review period
relations between components also exist in make-to-order and
configure-to-order environments.

In this context, we consider a two component assemble-to-
order (ATO) system, where the inventory levels are reviewed
periodically. One component has a high holding cost, long lead
time and short review period, whereas the other component has a
relatively low holding cost, short lead time and long review
period. We further assume that lead times are deterministic and
review periods are determined exogenously. Customer demand is
stochastic and unsatisfied customer demand is backlogged. The
objective is to minimize the expected cost per period consisting of
holding and backordering costs by determining the optimal policy
parameters. Since the form of the optimal policy is not known for
this system, we explore the performance of two different heuristic
inventory control policies and determine the cost optimal policy
parameters minimizing holding and backorder costs.

The first policy considered is the pure base stock policy in
which replenishment orders are placed to restore a fixed base
stock level for each component. This policy is well studied in the
literature on ATO systems and widely applied in practice. Under a
periodic review setting, pure base stock policies are shown to be
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optimal for serial systems with equal review intervals by Clark
and Scarf (1960) and with nested review intervals by Van Houtum
et al. (2007). Rosling (1989) shows that the results and methods
for serial systems can be used for solving pure assembly systems.
However, our problem does not fit into any of these cases due to
the review period constraints. If we apply Rosling’s (1989)
approach to our model, the equivalent serial network does not
have the required nested review intervals property. As a conse-
quence, Van Houtum et al.’s (2007) result cannot be applied to
this model.

The second inventory control policy we consider is the so-called
‘‘balanced base stock policy’’. Here, we assume a base stock policy
for the longest lead time component. Then, all other components’
base stock levels are coordinated with respect to the stock level of
this pivot component. Balanced base stock policy was first studied
by Zhang (1995) for an ATO system with one end-item and equal
replenishment intervals. The analytical results show that indeed the
system behaves like a single stockpoint.

In ATO systems, there are two major challenging problems.
The first one is the component allocation problem for the case of
multiple end-items. As we study a single end-item model, this
problem does not occur. The second problem is minimizing the
expected number of backorders or item-based backorders under
pure base stock policies. In general, this is computationally
demanding because the process involves joint probabilities and
optimization of nonseparable functions.

The literature on discrete-time ATO systems considers both of
these issues. Hausman et al. (1998) study an ATO system with a
decentralized base stock policy and normal distributed demand.
They propose an equal fractile method for non-stockout prob-
ability and develop a heuristic for maximizing a lowerbound on
the order fill rate. Zhang (1997) and Agrawal and Cohen (2001)
study a similar system where the objective is to minimize total
inventory investment subject to a service level constraint. Zhang
(1997) defines a so-called fixed-priority allocation rule and
concentrates on demand fulfillment rates. On the other hand,
Agrawal and Cohen (2001) gain managerial insights on the
problem when the component allocation is based on fair-shares
rule. Akc-ay and Xu (2004) introduce a simple and order-based
component allocation rule and compare it with the previously
stated ones. De Kok (2003) defines a set of ATO systems named as
‘‘strongly ideal’’. Then, through rigorous analysis he finds exact
expressions for the performance characteristics of such systems
and develops efficient approximation methods.

In continuous-time framework, most research focuses on
computing order-based backorders, performance measures like
order-fulfillment rates or finding bounds for item-based back-
orders. The most recent work in this setting includes Song (2002),
Song and Yao (2002), Lu et al. (2005), Lu and Song (2005) and
Hoen et al. (2011). All these papers assume ATO systems with
Poisson distributed customer demand and pure base stock poli-
cies. Finally, we refer the reader to the book chapter of Song and
Zipkin (2004) for an extensive literature review on ATO systems.

To the best of our knowledge, this is the first paper on ATO
systems with different review intervals for each component. We
compute the exact expressions for expected cost per period, and
we derive optimality conditions. Reinforcing the numerical
results of De Kok (2003), we analytically prove the equivalence
of non-stockout probability to newsboy fraction at optimality for
both pure base stock policy and balanced base stock policy.

The remainder of the article is organized as follows. Firstly, we
describe the detailed model assumptions and the related total
cost function in Section 2. Secondly, we formulate and analyze the
optimization models based on pure base stock policy and
balanced base stock policy in Section 3. Next, in Section 4, we
present numerical results to asses and compare the system

performance under both replenishment policies. Finally, we
summarize the main contributions of this study and give direc-
tions for further research in Section 5.

2. The assemble-to-order model

We have a single item that is assembled from two compo-
nents. One piece of each component is needed to produce one end
item. The expensive component is stocked at stockpoint 1 and the
cheap component is stocked at stockpoint 2. It is assumed that the
inventories of components are replenished from suppliers with
infinite capacity. Whenever customer demand occurs, the end
item is assembled immediately if both components are available
otherwise it is backordered.

Time is divided into periods of equal length and the planning
horizon is infinite. We want to make a clear distinction between a
‘‘period’’ and a ‘‘review period’’. Without loss of generality each
period is assumed to have length 1 and periods are numbered as
f0;1,2, . . .g. A review period, on the other hand, is composed of
multiple periods where at the beginning of a review period the
stock levels are reviewed and orders are placed.

There are four main events that may occur during a period:
(i) arrival of orders (if scheduled to this period), (ii) placing
of orders (if the period is also the beginning of a review period),
(iii) occurrence of demand, (iv) incurring costs. The first
three events take place at the beginning of the period. We
assume that customer demand occurs after ordering decisions
are made. Holding and penalty costs are incurred at the end of
each period.

We define In(t) as the total on-hand inventory of component n

at the end of period t. The net stock of a component equals all on-
hand inventory at this stockpoint minus the amount of back-
orders. Xn(t) denotes the net stock of component n at the end of
period t. Also, we define the inventory position of a component as
its net stock plus all material in transfer to that stockpoint. Let
IPn(t) be the inventory position for component n at the beginning
of a period t after ordering decision is made.

Component n has a review period of length Rn such that the
inventory position of n is reviewed and replenishments are made
every Rn periods. We assume that component 2’s review period is
an integer multiple of component 1’s review period. Further, we
define rAN as the number of times that component 1 can be
ordered per order of component 2. Thus, the relationship is
R2 ¼ rR1 and R2ZR1 by definition.

Customer demand in each period is independent and identically
distributed with density function f ð�Þ and distribution function Fð�Þ.
D½t,tþ1Þ represents the demand during period t with expected
value m, variance s2, and coefficient of variation cv. Cumulative
demand occurring during a time interval between the beginning of
period t1 and till the beginning of period t2 ð0rt1ot2Þ is denoted
by D½t1,t2Þ. Further, we assume that FðD½t,tþ1Þo0Þ ¼ 0.

The lead time Ln between placing and arrival of an order for
stockpoint n is assumed to be deterministic and it is defined in
periods. The relation between the lead time of the components is
L2oL1.

We further assume synchronization in the timing of order
arrivals such that an order arrival at stockpoint 2 always coincides
with an order arrival at stockpoint 1. Without loss of generality,
we assume that stockpoint 1 places an order at the beginning of
period zero. Thus, the ordering periods of stockpoint 1 are defined
by the set T1 ¼ fkR19kAN0g. An order placed by stockpoint 1 at
period t (tAT1) will arrive at the beginning of period tþL1 in
which an order of stockpoint 2 will also arrive. Since R2 is an
integer multiple of R1, at periods kR2þL1 (where kAN0) there will
be an arrival of both components. So, the set of ordering periods
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