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a b s t r a c t

Many perishables such as fresh food and blood platelet concentrates are characterized by a short

maximum shelf life. As demand is often highly uncertain the outdating and shortages figures can be

very high, especially when frequent replenishment is not possible or inefficient due to fixed ordering

cost. We present a new class of stock-level dependent ordering policies: the ðs,S,q,QÞ policy, which is a

periodic review (s,S) policy with the order quantity restricted by a minimum (q) and maximum (Q).

Optimal (weekday dependent) parameter values are derived by dynamic programming and simulation.

The ðs,S,q,Q Þ policy performs nearly optimal and improves the (s,S) policies in many cases by 4–25%.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Ordering problem and assumptions

We focus on inventory systems of perishables products for
which balancing outdating and shortages is a challenging pro-
blem. Typical products that we have in mind are fresh produce,
dairy products, and blood products with a short maximum shelf
life of m¼3–7 periods. Inventories of such products are charac-
terized by significant outdating and shortages when demand is
highly uncertain and replenishments do not happen every period.
In Haijema et al. (2007) a stochastic dynamic programming–
simulation approach is presented for the periodic review of
inventories of blood platelet concentrates. We copy the main
assumptions of that paper, i.e. the demand is stochastic and
periodic, the product lead time is 1 period, the periodic placement
of an order is forbidden in some periods (e.g. during weekends).
In this paper we are generalizing this model by including fixed

ordering costs that are involved in placing an order or setting up a
production run. In Haijema et al. (2007) these fixed costs could be
neglected for the specific case of a Dutch central blood bank, but
fixed costs should be accounted for in many other settings (e.g.
hospitals and blood banks with much smaller inventories that are
not replenished daily). As a result, the optimal ordering policy is
more complex and we derive a new class of ordering policies and
a new procedure to determine nearly optimal parameter values
for these policies.

1.2. Approach and main results

We will formulate the ordering problem as a periodic Markov
decision problem (MDP). To ease the discussion we set the review
period to 1 day and assume that the problem is (1) stationary
across weeks (any week is stochastically the same as any other
week) and (2) non-stationary within a week (i.e some problem
parameters are different for the different weekdays).

For a variety of cases we derive numerically an optimal stock-age

dependent ordering policy by stochastic dynamic programming
(SDP). Via simulation the structure of the optimal policy is investi-
gated, and stock-level dependent policies that fit well are extracted.
Stock-level dependent policies are preferred for practical use as
these are easier to understand and to apply by inventory managers.
The optimal policy can be approximated by a ‘periodic’ (s,S) policy
that has weekday (d) dependent parameter values ðsd,SdÞ.

The structure of the optimal policy suggests to restrict the
order quantity by a minimum and a maximum, qd respectively Qd,
on weekday d. We call our new policy the periodic ðs,S,q,Q Þ policy
or the ðsd,Sd,qd,QdÞ policy. This class of stock-level dependent
ordering policy appears to be new and performs in many cases
close to optimal and much better than the ðsd,SdÞ policy. The SDP–
simulation approach provides not only a benchmark by comput-
ing an optimal stock-age dependent policy, but it also derives
near optimal parameter values for both the ðsd,SdÞ policy and the
ðsd,Sd,qd,QdÞ policy.

1.3. Outline

In the next section (Section 2) we discuss relevant literature.
In Section 3 we formulate the ordering problem as an MDP.
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For a numerical base case, we compute and simulate in Section 4
an optimal stock-age dependent ordering policy. Next, we
approximate it by stock-level dependent policies (see Section 5).
In Section 6 we compare for a variety of cases the optimal policy
and the approximate ordering policies. In Section 7, we close the
paper and conclude when to consider the new class of ordering
policies.

2. Literature review

Most of the research of ordering polices for perishable is
dedicated to stock-level dependent policies, like order-up-to S

and (s,S) policies. These policies do not acknowledge the perish-
able nature of the product and are therefore generally suboptimal,
see Nahmias (1975b) and Fries (1975). For an overview of the
early work we refer to Nahmias’s (1982) overview. Recently an
accurate overview of about 150 papers is provided by Karaesmen
et al. (2011). None of these papers present a periodic review
model for a perishable product with a fixed shelf life, a fixed lead
time and fixed ordering costs.

Nahmias (1975a) notes that the optimal order quantity for a
perishable product is often lower than the quantity for a non-
perishable product (NP) set by an order-up-to policy with fixed
order-up-to level SNP. Therefore he develops and simulates two
modifications of the order-up-to SNP policy. The first modification
is to order linearly less than in the non-perishable case: that is
order bðSNP�xÞ products, where x is the total stock level and
ð0obo1). The second modified policy includes an upper bound
Q on the order quantity: that is order minfQ ,SNP�xg. It appears
that both modified policies perform worse than an order-up-to Sn

policy with SnrSNP being the optimal order-up-to level for the
perishable case. Nahmias neither optimize over S and Q simulta-
neously, nor did he study in the impact of fixed ordering costs and
the inclusions of a lower bound on order quantity as we do for the
ðs,S,q,Q Þ policy. We will observe that including bounds q and Q

does make sense.
In a lost sales model for non-perishables with a positive product

lead time it is shown, under a common linear costs structure that
the optimal policy is restricted by a maximum order quantity Q

(see Hill and Johansen, 2006). This maximum limits the order
quantity when the stock level is low and thus anticipates that part
of the demand may be lost during the lead time.

A lower bound on the order quantity is studied only in a few
papers on non-perishables. In all papers, this minimum order
quantity is a fixed problem parameter that is not to be optimized.

Finding a cost-optimal ordering policy for perishables with a
fixed maximum shelf life is complicated because as such an
optimal policy is typically stock-age dependent resulting in a
multi-dimensional state space. In Haijema et al. (2007) an
aggregation approach is used to overcome the computational
complexities and simple policies are derived to be used in blood
management practice. In that paper any fixed set-up costs in
producing blood platelet concentrates for a central blood bank
could be neglected as production happens every weekday. In that
setting the optimal policy can be closely approximated by an
order-up-to S policy. In Haijema et al. (2009) the same problem
but with non-stationary production breaks is solved.

2.1. Contribution

We derive a new class of stock-level dependent ordering
policies that includes and improves existing ones. The numerical
results contradict earlier observations of Nahmias (1975a): add-
ing bounds to a base stock policy may greatly improve the
ordering policy for perishables! We focus on inventories

problems in which outdating and shortages are significant even
under an optimal stock-age dependent ordering policy, e.g.
because of non-negligible fixed ordering costs. Therefore we
present a new class of policies and a new procedure to find
(nearly) optimal parameter values.

3. Optimal ordering: a Markovian decision problem (MDP)

An optimal ordering policy can be computed by formulating
and solving the underlying Markov decision problem (MDP).
For the details we refer to Haijema et al. (2007). The state of
the MDP is ðd,xÞ where dAf1, . . . ,7g ¼ fMonday, . . . ,Sundayg and
x¼ ðx1, . . . ,xmÞAX ðdÞ with element xr equal to the number of
products in stock at the start of the day that have a residual shelf
life of r days. If not issued x1 products expire by the end of the
day. After observing the state one decides to order
aAAðd,xÞ ¼ products at the start of day d.

We consider two types of demand: type 1 customers get the
youngest available products (LIFO), type 2 customers get the
oldest products first (FIFO). The stock transition from one state x
to a next state y is denoted by the function yðx,j1,j2,I,aÞ, where j1
and j2 are the quantities demanded by the two types of demand
and I is the composite issuing policy, e.g. (LIFO, FIFO). In this
transition shortages occur when j1þ j24x¼

Pm
r ¼ 1 xr . Any pro-

duct left in stock will age by 1 day at the end of the day. Then
outdated products are removed from stock and new products
arrive prior to the next stock inspection: ym ¼ a. In order to track
outdating, let jI

1,1 and jI
2,1 denote the number of products with

only 1 day of residual shelf life that is taken from stock to meet
the type 1 respectively type 2 demand. The number of products
that outdate is thus ðx1�jI

1,1�jI
2,1Þ
þ , with zþ ¼maxf0,zg.

The expected immediate costs to incur in state ðd,xÞ when a

products are ordered are

ECðd,x,a,IÞ

¼
X
j1 ,j2

pdðj1,j2Þ �

cF � dða40Þ fixed order costs,

þcO � ðx1�jI
1,1�jI

2,1Þ
þ outdating costs,

þcS � ðj1þ j2�xÞþ shortage costs,

8>><
>>:

ð1Þ

where pdðj1,j2Þ is the convolution of two (discrete) demand
distributions and dða40Þ ¼ 1 when a40 and 0 otherwise.
For each order that is placed fixed ordering costs cF are accounted
that relate to the effort involved with a replenishment (e.g. the
transhipment and handling costs or the costs of setting up a
production run). The unit outdating costs cO are the effective costs
of disposing a product, which include the purchase or production
costs of the outdated product. The unit shortage costs cS impose a
penalty on being out-of-stock and include, if applicable, the unit
costs related to a lateral transhipment. Note that we have kept the
cost structure simple; one could add holding costs. In case age
preferences are formulated one may add penalties on issuing
older products.

The objective is to find an ordering policy that minimizes the
expected average costs per period, which we can compute by
stochastic dynamic programming (see Puterman, 1994):

Vnðd,xÞ ¼ min
aAAðd,x,IÞ

ECðd,x,aÞ:þ
X
j1 ,j2

pdðj1,j2ÞVn�1ðdþ1,yðx,j1,j2,I,aÞÞ

1
A:

0
@

ð2Þ

When the number of states is very large the discrete state and
action spaces could be aggregated to speed up the computations
(see Haijema et al., 2007).
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