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This paper considers a single-echelon, continuous review, inventory system with a warehouse facing

compound Poisson customer demand. The replenishment lead-time is constant. Demand that cannot be

met directly is backordered. There are standard linear holding and backorder costs but no set-up or

ordering cost. It is assumed that the demand process starts at a certain given time. Consequently, before

the demand starts, the lead-time demand is lower than in steady state. This affects the optimal ordering

policy. We derive the optimal ordering policy under these assumptions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A standard assumption in stochastic inventory models is that
we have reached steady state. The optimal policy is therefore only
directly applicable under this assumption. However, there is
normally also an initiation problem when starting to sell a new
item. It may be that the company announces officially that it
starts to sell a new item at a certain date. Then there is no
demand before that date.

In this paper we consider such a situation. The stochastic
demand in the form of a compound Poisson process starts at a
certain time denoted time 0. Otherwise all assumptions are
standard. There are holding and backorder costs per unit and
unit time. There is no set-up or ordering cost so there is no
advantage to order in batches. The replenishment lead-time is
constant.

Several previous papers have dealt with related initiation
problems in connection with inventory control. One such situa-
tion, considered in several papers, is when demand cannot be
satisfied until a batch is delivered, there is no initial stock, and the
production rate is finite. It is then, in general, optimal to use
smaller initial batch quantities so that demand can be satisfied
earlier. Examples of models dealing with this aspect are Axsäter
(1988), Ding and Grubbström (1991), and Grubbström and Ding
(1993). Axsäter (in press) considers a related situation where the
forecasts are improving. It turns out that this will also affect the
initial batch quantities. Other reasons to use different initial batch
quantities can be learning and forgetting effects, which change
the production rate. See e.g., Elmaghraby (1990) and Klastorin
and Moinzadeh (1989).

This paper is organized as follows. Section 2 describes the
considered problem in detail. We derive the optimal policy in
Section 3. Finally, we give a few concluding remarks in Section 4.

2. Problem formulation

A single warehouse facing discrete compound Poisson custo-
mer demand is considered. Demands that are not met directly are
backordered. We consider standard holding and backorder costs.
There are no ordering costs. The lead-time for replenishments is
constant. Furthermore, we assume continuous review.

Under the considered assumptions, it is well known that the
optimal control policy in steady state is an (S�1, S) policy, or
equivalently an S policy, i.e., when the inventory position (stock on
hand, plus outstanding orders, and minus backorders) declines below
the optimal order-up-to level S, an order is triggered to bring the
inventory position back to S. Such policies are common in practice
especially for relatively expensive spare parts with low demand.

However, we do not consider a system in steady state. Instead,
it is assumed that the demand process starts at time 0, i.e., before
this time there is no demand. We can order at any time before or
after time 0, though, and the replenishment lead-time is constant
and the same for all orders.

Let us introduce the following basic notation:

L lead-time for replenishments,
S order-up-to inventory position,
D(t) stochastic demand during time t,
l customer arrival intensity,
fj probability for demand quantity j, fj¼0 for jo1,
f n
j probability that the total number of units demanded by

n customers is j, i.e., the n-fold convolution of fj,
m

P1
j ¼ 1 jfj¼average size of a customer demand,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijpe

Int. J. Production Economics

0925-5273/$ - see front matter & 2013 Elsevier B.V. All rights reserved.

doi:10.1016/j.ijpe.2011.05.028

E-mail address: Sven.Axsater@iml.lth.se

Int. J. Production Economics 143 (2013) 553–556

www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2011.05.028
mailto:Sven.Axsater@iml.lth.se
dx.doi.org/10.1016/j.ijpe.2011.05.028


h nonnegative holding cost per unit per unit time,
b nonnegative backorder cost per unit per unit time,
IP inventory position,
IL inventory level,
Poðl,kÞ ¼

Pk
j ¼ 0

e�llj

j! cumulative Poisson distribution.

3. The optimal policy

3.1. Optimal steady state policy

Consider first a steady state situation. It is well known how to
determine the expected costs when applying an (S�1, S) policy.
(See e.g., Axsäter, 2006 for more details.) Consider an arbitrary
time t and also the time tþL. Orders that are triggered in the
interval (t, tþL] have not reached the inventory at time tþL

because of the lead-time, but everything that was already on
order at time t has reached the inventory. Consequently we have

ILðtþLÞ ¼ IPðtÞ2Dðt,tþLÞ ð1Þ

where D(t, tþL), or simpler D(L), is the stochastic lead-time
demand.

Assume that the inventory position is kept at S all the time and
let the corresponding expected holding and backorder costs per
unit of time be C(S, L). Using (1) we get

CðS,LÞ ¼ hEðILþ ÞþbEðIL�Þ ¼ ðhþbÞEðILþ Þ�bEðILÞ

¼ ðhþbÞe�lL
XS�1

j ¼ 0

ðS�jÞ
Xj

n ¼ 0

ðlLÞn

n!
f n
j �bðS�lLmÞ ð2Þ

where we use the notation: xþ¼max(x, 0) and x�¼max(�x, 0).
Note that x¼xþ�x� . In (2) n is the number of customers during
the lead-time, which has a Poisson distribution. Furthermore j is
the corresponding demand. Recall that f n

j is the probability that n

customers result in the total demand j. The inventory level at time
tþL is S� j.

C(S, L) is convex in S, and S¼0 is a lower bound for the optimal
order-up-to level. (A lower S will just give higher backorder costs but
no reduction of the holding costs.) We can therefore optimize S by
starting with the lower bound S¼0 and then increase S by one unit
at a time until we find a local optimum, which is then also a global
optimum. We denote the optimal policy Sn(L) and the corresponding
optimal cost Cn(L). It is also well known that Sn(L) is nondecreasing in
L. (This follows e.g., from (5.61) in Axsäter (2006), p. 103.)

3.2. Optimal initiation policy

Let us now turn to the case when the demand starts at time 0.
It is obvious that we do not want any deliveries before time 0.
This means that we should have no orders before time �L.
We can get deliveries at any time tZ0 by ordering at time t�L.
Let us now first state the following simple proposition.

Proposition 1. From time 0 it is optimal to apply an Sn(L) policy.

To see that Proposition 1 is true we just note that (1) and (2)
are valid for tZ0 and that we get the optimal policy in the same
way as we obtained the optimal steady state policy in Section 3.1.

Next we consider the policy in the remaining interval [�L, 0)
and we have

Proposition 2. In the interval [�L, 0) it is optimal to apply a time
variable (S�1, S) policy. At time t the optimal order-up-to-level is
Sn

t ¼ SnðtþLÞ. (Note that when t is increasing from �L to 0 the
considered interval length tþL is increasing from 0 to L.)

Proof. Consider an ordering policy in [�L, 0) and let IPt be the
accumulated orders at time t, i.e., the orders in the interval [�L, t].

Note that IPt must be nondecreasing. Recall that there is no
demand in [�L, 0). All that is included in IPt has reached the
stock at time tþL, while later orders have not. Consequently we
get the inventory level at time tþL as

ILðtþLÞ ¼ IPt2Dð0,tþLÞ ¼ IPt�DðtþLÞ: ð3Þ

From the derivation of the optimal policy in steady state in

Section 3.1, it is obvious that we minimize the expected costs at

tþL if IPt¼Sn(tþL). This is then also the optimal policy, because

Sn(tþL) is nondecreasing so we can follow this inventory position

for all to0 by applying the order-up-to-level Sn
t ¼ SnðtþLÞ. This

proves the proposition. &

3.3. Numerical determination of the decision rule

To be able to apply the optimal policy we need to determine
Sn

t ¼ SnðtþLÞ for different values of t. For t¼�L we have
Sn
�L ¼ Snð0Þ ¼ 0 because the cost rate is then 0 at time 0. Just

before t¼0 we have Sn

0 ¼ SnðLÞ. As we increase t from �L to 0, Sn
t

will increase stepwise, one unit at a time, from Sn(0)¼0 to Sn(L).
Clearly, the switch from S to Sþ1 must occur when C(S,
tþL)¼C(Sþ1, tþL). Note that a switch must be for one unit at a
time. To see this, assume there is a switch from S to Sþk and that
k41. We must then have C(S, tþL)¼C(Sþk, tþL), and both S and
Sþk are optimal. But due to the convexity, intermediate values
e.g., Sþ1 will give even lower costs, which is a contradiction.

It is easy to determine the optimal switching points by a
bisection search. Let tk be the time when it is optimal to switch to
order-up-to level k. Recall that the largest value of k that we need
to consider is Sn(L). Assume that tk�1 is known. (Recall that
t0
¼�L.) Clearly, tk�1 is lower bound for tk, i.e., tk ¼ tk�1. As an

upper bound we can use tk ¼ 0. We can get a new value of the
switching time as t¼ ðtkþtk Þ=2. Clearly, if C(k�1, tþL)oC(k,
tþL) we know that t can serve as an improved lower bound,
and otherwise as an improved upper bound. We continue like this
until the gap between the bounds is sufficiently small.

3.4. Example

To illustrate the determination of the optimal policy we consider
an example with pure Poisson demand, i.e., f1¼1. Furthermore, the
intensity of the customer arrivals is l¼1. The lead-time L¼2, the
holding cost per unit and unit time is h¼1, and the backorder cost
per unit and unit time b¼10. Using (2) we determine the optimal
steady state order-up-to level as Sn(2)¼4. Next we determine the
switch points from 0 to 1, 1 to 2, 2 to 3, and 3 to 4. We get the times
�1.905, �1.498, �0.944, and �0.315 respectively. The optimal
order-up-to policy is illustrated in Fig. 1.

3.5. Cost evaluation

We know that the optimal order-up-to inventory position is
piecewise constant and increasing by one unit at a time in the
interval [�L, 0). The policy in this interval will determine
the transient costs in the interval [0, L). We shall determine
the expected costs in this interval. After this interval we have the
optimal steady state costs that we do not need to consider again,
so we limit our attention to the costs in the interval [0, L). Let the
optimal inventory position be S in the interval [a, b], where
�Lrarbr0. The corresponding expected costs in (aþL, bþL)
are denoted by c(a, b). Consider a time t in the considered
interval. The corresponding lead-time demand is the compound
Poisson demand during the time tþL. Recall that the demand
starts at time 0.
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