
Resource management in software as a service using the knapsack
problem model

Fotis Aisopos n, Konstantinos Tserpes, Theodora Varvarigou

Department of Electrical and Computer Engineering, National Technical University of Athens, 9, Heroon Polytechniou Str, 15773 Athens, Greece

a r t i c l e i n f o

Article history:

Received 14 January 2011

Accepted 6 December 2011
Available online 16 December 2011

Keywords:

Software as a Service

Resource allocation

Service Level Agreement

Quality of Service

Fractional Knapsack problem

Service oriented architecture

a b s t r a c t

This paper proposes a resource allocation model for ‘‘Software as a Service’’ systems that maximizes the

service provider’s revenues and the resource utilization under a heavy load. Employing the elasticity of

virtualized infrastructures, the proposed model dictates that system resources must be fully exploited

by incoming jobs, even if they do not satisfy their requirements completely. This yields a higher Service

Level Agreement violation probability, which is mitigated by the assignment of more resources when

these become available. The problem is deduced to the Fractional Knapsack problem and the heuristic

solution is implemented in the frame of a SOA environment.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

A distributed environment is a system comprised of a set of
interconnected resources, with a virtualization layer applied on
top of them for interoperability and scalability, delivering a single
point of interaction to the customer. A feverish discussion is
taking place in the research community about the various
distributed computing environments utilities, especially after
the emergence of Cloud Computing as a business solution on
the web, when Grid computing had only started addressing the
same space adequately. Cloud Computing enables the distinction
between the application development framework and the under-
lying resources. It is therefore possible to provide to the end user
a platform for application development and/or deployment, an
infrastructure or even the application itself, all through web
services and usable front ends. The fact that computing or storage
resources are virtualized as web resources broadens the customer
target group making Cloud services available to various stake-
holders. Grid computing on the other hand seems to be addres-
sing the needs of larger organizations. The Grid services’
consumer agrees to use Grids without having much control over
the application, which is solely provided and known to a service
provider and/or the application developer.

Although these prominent distributed system paradigms pre-
sent differences in the way they propagate the control of their
resources to the service customers and the level of usability that
each one exposes towards the customers, the principle remains
the same: they are both service provisioning systems which,
when it comes to resource management, they both attempt to
abstract/virtualize the underlying resources providing a seamless
way to access and manage them. Thus, solutions such as Software
as a Service (SaaS) are basically common approaches in distrib-
uted computing.

Generally, existing distributed SaaS environments support the
provision of dynamically scalable and virtualized resources as a
service over the Internet. In such systems, the infrastructure
resources can be provided exteriorly as a ‘‘pool’’ of resources, like
a seamless, single infrastructure with aggregated capabilities.
Service customers run various jobs by invoking the respective
services with a set of specific requirements for a certain tariff. The
resources assigned to each job are elastic, i.e. the provider can
dynamically assign the amount of memory, CPU and disk space to
a specific job and therefore their performance and capabilities can
vary based on the set up. Taking advantage of this property
(elasticity), providers are able to maintain high resource utiliza-
tion while trying to deliver services at the requested quality. An
important issue in this supply chain is the establishment of
appropriate performance measures, ensuring the supply chain
effectiveness and efficiency. These can be categorized as either
qualitative (e.g. customer satisfaction with the service received)
or quantitative (e.g. objectives depended directly on cost or profit
defined in the service tariff) (Beamon, 1998).

Service quality and performance is evaluated in a form
of electronic contract, called Service Level Agreement (SLA). SLA

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ijpe

Int. J. Production Economics

0925-5273/$ - see front matter & 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.ijpe.2011.12.011

n Correspondence to: Distributed Knowledge and Media Systems Laboratory,

Department of Electrical and Computer Engineering, 3rd Floor, Room B.3.19,

National Technical University of Athens Campus, 9 Heroon Polytechniou Str,

15773 Athens, Attica, Greece. Tel.: þ30 210 7722568; fax: þ30 210 7722132.

E-mail addresses: fotais@mail.ntua.gr (F. Aisopos),

tserpes@mail.ntua.gr (K. Tserpes), dora@mail.ntua.gr (T. Varvarigou).

Int. J. Production Economics 141 (2013) 465–477

www.elsevier.com/locate/ijpe
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2011.12.011
mailto:fotais@mail.ntua.gr
mailto:tserpes@mail.ntua.gr
mailto:dora@mail.ntua.gr
dx.doi.org/10.1016/j.ijpe.2011.12.011


is a contracting tool keyed to a client’s service performance
expectations, for identifying the responsibilities of both the
customer and provider (Manthou et al., 2004), by defining the
Quality of Service (QoS) level promised to be delivered, using
quantifying metrics. These metrics specify – explicitly or impli-
citly – the resources that are to be allocated by the provider to the
consumer. Among others, SLAs define the period that this agree-
ment will be active, the cost for the resources as well as clauses
that safeguard both the sides from potential SLA term violations
(e.g. execution deadline). The latter is usually expressed into
monetary compensations, thus, their avoidance is a priority for
providers that wish to preserve a good reputation.

With a few exceptions such as Gallizo et al. (2009), SLAs are
long-term and resource-oriented (Vs job-oriented) which means
that the provider guarantees the allocation of a certain amount of
resources to the consumer who in turn can use them at anytime
and any extend during the contract’s lifetime. This implies, how-
ever, that it is not necessary for all resources to be reserved on
behalf of the consumer during the whole SLA lifetime. This
observation is critical because providers tend to employ inflexible
allocation schemes such as resource reservation in fear of condu-
cing SLA violations. However, at any given instance, if the jobs
submitted by customers demand in total more resources than
those available based on their SLAs, the provider comes across a
problem that needs to be solved. If the resource pool does not
suffice to cover the demand, providers resort to outsourcing jobs or
grant extra resources, given that they are keeping valuable
resources as a backup. Although this is not a significant problem
for large organizations like Amazon (Amazon Web Services LLC,
2010) with practically unlimited resources available, for Small
Medium Enterprises (SMEs) this means leasing extra resources or
simply denying jobs (violating the SLA). All these alternatives cost
money and indicate a lack of flexibility when it comes to assess the
risk of undertaking a job using uncommitted resources, even if they
do not suffice to cover demanded quality, at the particular time.

The implementation of a mechanism to effectively allocate
resources on run-time comes under a set of NP-hard optimization
problems with numerous parameters being required to be
counted in. This paper presents a solution for maintaining the
maximum resource utilization at the cost of risking potential SLA
violations, on the pending jobs that will yield the smaller profit
for the provider. It does however make two basic assumptions
that may affect the feasibility of the proposal: (a) all submitted
jobs are preemptive, i.e. they can be interrupted and resumed at a
later stage; (b) the pool of resources is homogeneous (or treated
as such).

The proposed solution considers the resource infrastructure as
a pool of elastic resources using any technology for resource
virtualization. Therefore the resources are divided in small chunks
and allocated for incoming jobs. The amount of given resources
can vary based on the workload generated by the job require-
ments. The term ‘‘workload’’ refers to the amount of resources
that need to be allocated in order to fully satisfy the QoS
requirements of a customer when he submits a job. A more
specific term could be the ‘‘demanded workload’’, which is
calculated by the provider when mapping high level requirements
to low level parameters. It is thus depended on the customer
requirements but also on time, because the demanded workload
is reduced when part of the job has been executed and can be
increased when a job remains in the queue for execution for a
long time.The problem now is to maximize the resource utiliza-
tion while at the same time maximizing the profit. For solving this
we resort to a well-known problem with which our own presents
analogies: a variant of the knapsack problem: ‘‘Given a set of
items (jobs to be submitted), each with a weight (workload) and a
value (profit), determine the number of each item to include in a

collection (set of jobs to be executed/resources to be committed)
so that the total weight (total workload) is less than or equal to a
given limit (infrastructure limitations) and the total value (total
profit) is as large as possible’’.

Given the above analogy, we investigate the possible solutions
and formulate our allocation as a knapsack problem. In order to
conclude to the most well-fitted solution, we also model the
profit from job execution. Profit in the examined case, is a multi-
parametric function, depended on the probability of an SLA
violation given the amount of committed resources, the compen-
sation cost and the infrastructure operating cost yielding from a
job execution.

To evaluate the proposed solution, we implement a resource
allocation scheme at the level of a distributed system’s meta-
scheduler. The implementation approach takes into consideration
the cost of a job with specific requirements, the cost of an SLA
violation and the probability of an SLA violation, given the job’s
workload in order to calculate the profit at any time. In the
evaluation phase, various pricing strategies are employed so as to
test the model against the potential profit it yields.

The document is organized as follows: Section 2 presents all
the related work in the specific area. Section 3 describes our
resource allocation model deducting it to the Fractional Knapsack
problem (the variant of knapsack) and presenting a heuristic
greedy solution for the current multi-dimensional problem.
Section 4 describes the architecture of the system that the
evaluation of the provided solution took place, while Section 5
presents the experiment performed and analyses the results.
Finally, Section 6 presents the conclusions of the current work.

2. Related work

So far, there has been a great deal of research on resource
allocation and notable progress in maximizing resource utiliza-
tion in systems as the ones described above.

An implementation of a distributed, market-based resource
allocation system was provided by Lai et al. (2004), where
distributed clusters like the Grid and PlanetLab were studied.
The purpose of the platform developed (Tycoon) was to allocate
computing resources like CPU cycles, memory, network band-
width, etc. to users in an economically efficient way. Tycoon
system introduced three new allocation components, while using
Linux VServer for virtualization, focusing on the maximization of
the revenues of the specific system. Another business-focused
resource managing model for service oriented architectures (SOA)
was introduced by Pueschel et al. (2009). This work involves
Cloud Computing, proposing decision support mechanisms for the
Cloud provider, in order to get a revenue optimization in the
respective business model. Resource management for Clouds was
also studied by Nguyen Van et al. (2009), who presented an
autonomic virtual resource management mechanism for service
hosting platforms. Zhao and Sakellariou (2007) studied advance
resource reservation in Grids, while Chase et al. (2003) presented
new mechanisms for dynamic resource management in a cluster
manager, allocating servers from a common pool to multiple
virtual clusters.

The papers presented above tackle the resource allocation
problem focusing on the available resources and the demands of
specific applications. Our approach involves both the low-level
parameters of the reservation process, as well as the high-level
Quality of Service provisioning details, which are a result of the
agreement between the service provider and the customer. As
mentioned in Section 1, these details are usually encompassed in
the Service Level Agreement in the form of contractual terms and
define the level of the provided quality. Job Scheduling based on

F. Aisopos et al. / Int. J. Production Economics 141 (2013) 465–477466



Download	English	Version:

https://daneshyari.com/en/article/5080634

Download	Persian	Version:

https://daneshyari.com/article/5080634

Daneshyari.com

https://daneshyari.com/en/article/5080634
https://daneshyari.com/article/5080634
https://daneshyari.com/

