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a b s t r a c t

We study the order acceptance and scheduling problem in a two-machine flowshop. The firm receives a

pool of orders before a planning period, each of which is characterized by revenue, processing times on

machines 1 and 2, a due date, and a tardiness penalty. The firm seeks to decide on the orders to accept

and schedule the accepted orders so as to maximize the total net revenue. We formulate the problem as

mixed-integer linear programming models, and develop a heuristic and a branch-and-bound (B&B)

algorithm based on some derived dominance rules and relaxation techniques. We assess the

performance of the B&B algorithm and the heuristic via computational experiments. The computational

results show that the B&B algorithm can solve problem instances with up to 20 jobs within a reasonable

time while the heuristic is efficient in approximately solving large instances of the problem.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In today’s competitive manufacturing environment, many
firms increasingly adopt make-to-order production in order to
provide customized services to satisfy the distinct requirements
of customers. Customers typically require that the firm fulfills the
due date promises or deadlines for their orders. Acceptance and
processing of all the potential orders may not be a wise decision
for the firm due to its limited production capacity, which may
result in reduced revenue and even loss of customers. Selecting
the proper orders to accept depends on the strategic direction of
the firm and many other considerations. From a problem-oriented
perspective, order acceptance should go along with analyzing
capacity utilization. However, it is common in many industrial
practices that the order acceptance and capacity planning deci-
sions are made separately by the sales department and the
production department, respectively. Naturally the sales depart-
ment tends to accept as many orders as possible in order to
maximize revenue while the production department primarily
focuses on maximizing productivity. Such inter-departmental
conflict of interest will result in considerable delay in order
delivery or incurring extra resources. In order to maximize
revenue, it is essential that firms consider order acceptance and
production planning simultaneously.

The integrated order acceptance and scheduling problem has
received increasing attention in recent years (see, e.g., Slotnick
and Morton (2007), Rom and Slotnick (2009), Oğuz et al. (2010),
Slotnick (2011), Talla Nobibon and Leus (2011), and Cesaret et al.
(2012)). This stream of research has considered the problem

involving different objective functions in various settings. These
studies commonly assume that the orders are processed in the
single-machine environment.

In this paper we consider the problem in the two-machine
flowshop environment. Possessing distinct product characteris-
tics, each order is described as a job with different processing
times on machines 1 and 2. The two-machine flowshop model is
motivated by many industries where the process to produce
products typically comprises of two consecutive stages, e.g.,
a processing stage followed by a testing stage. An example is an
equipment manufacturer who produces large special-purpose
pressure-vessels. Each order includes only one type of pressure-
vessels with distinct characteristics in terms of metal-material,
size and shape, technological process standards, pressure perfor-
mance index, and so on. It is common that processing a product is
time consuming at one stage but not at the other, i.e., the
bottleneck machine shifts with the processed orders. Under such
circumstances, scheduling is an important issue. On the other
hand, any delay in delivering an order beyond its due date may
incur a penalty cost to the firm. Operating in such an environ-
ment, the firm faces the problem of order acceptance and
scheduling in a two-machine flowshop to maximize the total
net revenue.

The initial precursors to our study are Slotnick and Morton
(1996) and Ghosh (1997). They consider the job acceptance and
scheduling problem in the single-machine environment. They
assume that the orders have static arrival times, deterministic
processing times, weights that indicate customer priorities, and
revenues, and they consider lateness penalties. The objective is to
maximize the total net profit, which is the sum of the revenues of
all the accepted orders minus any lateness penalties. Slotnick and
Morton (1996) developed a branch-and-bound (B&B) algorithm
and a couple of heuristics to solve the problem optimally and
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approximately. Ghosh (1997) focused on studying the theoretical
aspects of the problem. Specifically, he established that the
problem is NP-hard in the ordinary sense and provided a fully
polynomial time approximation scheme (FPTAS). Lewis and
Slotnick (2002) extended the problem to multiple periods for
the case where rejecting a job of a customer will lead to the loss of
all the future jobs from that customer. They developed a dynamic
programming algorithm and a number of heuristics for this case.
In fact, sequencing is not a computational burden for this case
because there is a simple optimal sequence for the classical
single-machine scheduling problem to minimize the total
weighted lateness. Another variant of the problem is to find the
optimal sequence of the accepted jobs to minimize the weighted
tardiness. In recent years, Slotnick and Morton (2007) developed a
B&B algorithm and heuristics to treat this variant of the problem.
Rom and Slotnick (2009) developed genetic algorithms for the
problem. Furthermore, Oğuz et al. (2010), Talla Nobibon and Leus
(2011), and Cesaret et al. (2012) study other variants of the
problem. Oğuz et al. (2010) and Cesaret et al. (2012) consider the
case where the jobs have release times and sequence-dependent
setup times. The former study gave a mixed-integer linear
programming (MILP) model, which could be solved to optimality
for instances with up to ten jobs within a one-hour time limit
(also see Cesaret et al. (2012)), and developed three heuristics.
The latter study mainly developed a tabu search algorithm. Talla
Nobibon and Leus (2011) consider the case where there is an
order pool that consists of two disjoint subsets of planning jobs
and selectable jobs. They developed exact algorithms to solve this
case. More details and extensive research results on this topic
may be found in the recent reviews by Keskinocak and Tayur
(2004), and Slotnick (2011).

This paper is organized as follows. In Section 2 we formally
describe the problem under study. In Section 3 we construct two
MILP models of the problem. In Section 4 we develop several
heuristics and a B&B algorithm for the problem based on
some dominance rules and relaxation techniques. In Section 5
we numerically evaluate the performance of the developed
algorithms by running extensive computational experiments.
In Section 6 we conclude the paper with a summary of the
major research findings and suggest some future research
directions.

2. Problem description

We formally describe the problem as follows: a set of jobs
N¼ 1,2,. . .,nf g is to be scheduled in a two-machine flowshop. All
the jobs are available for processing at the beginning of the
planning period. The processing times of each job i on machines
1 and 2 are p1i and p2i, respectively. Each machine can only
process one job at a time and any job can begin processing on
machine 2 only after completing its processing on machine 1.
Associated with job i are its revenue ui, due date di, and weight wi

that represents its unit time delay penalty beyond di in delivery to
the customer. The decisions are to determine the jobs to accept
for processing and to schedule the accepted jobs. The objective is
to maximize the total net profit, which is the sum of the revenue
of each accepted job minus its weighted tardiness.

3. Mixed-integer linear programming models

In this section we model the problem under consideration as
two mixed-integer linear programming formulations, which can
be solved by using the CPLEX software.

3.1. Formulation MILP1

The formulation is based on an optimal property of the
problem, which is evident and stated without proof as follows:

Lemma 1. For the accepted jobs, there is an optimal schedule in

which each job is processed on both machines 1 and 2 in the same

sequence.

We define binary decision variables yiA{0,1}, i¼ 1,2,. . .,n,
which take 1 if job i is accepted and 0 otherwise. From Lemma
1, we define binary variables xikA{0,1}, i,k¼ 1,2,. . .,n, to identify
the positions of the accepted jobs for processing on machines
1 and 2, which take 1 if job i is accepted and is the kth job
processed on both machines 1 and 2, and 0 otherwise. We also
introduce binary variables zijA{0,1}, i,j¼ 1,2,. . .,n and ia j, which
are equal to 1 if and only if both jobs i and j are accepted and job j

is processed on machines 1 and 2 in the position immediately
after job i. In addition, we define real variables Ci and
Ti ¼max 0,Ci�di

� �
, i¼ 1,2,. . .,n, as the completion time on the

second machine and the tardiness of job i, respectively.
The above binary variables yi and xik are adapted from Oğuz

et al. (2010). In the two-machine flowshop, the completion time
Ci of the current processed job i is determined not only by the
completion time of the immediately preceding job i on machine 2,
but also by the partial sequence of the other jobs preceding job i.
Thus, it is necessary to define the additional binary variables zgh to
explicitly record the positions of the jobs preceding job i.

The MILP formulation is expressed as follows:

ðMILP1Þ : max
Xn

i ¼ 1

ðyiui�wiTiÞ

subject to

Xn

k ¼ 1

xik ¼ yi 8iAN , ð1Þ

Xn

i ¼ 1

xikr1 8k¼ 1,2,. . .,n , ð2Þ

zijryi, zijryj 8i, jAN and ia j , ð3Þ

xikþxj,kþ1rzijþ1 8i, jAN, ia j

and k¼ 1,2,. . .,n�1,
ð4Þ

CiZ0 8iAN , ð5Þ

TiZ0 8iAN , ð6Þ

Ciþyjp2jþðzij�1ÞMrCj 8i, jAN and ia j , ð7Þ

ðp1jþp2jÞxj1rCj 8jAN , ð8Þ

Xk

‘ ¼ 1

Xn

i ¼ 1

p1ixi‘þp1jxj,kþ1þp2jyjþðyj�1ÞMrCjþM
Xk

‘ ¼ 1

xj‘

8jAN and k¼ 1,2,. . .,n�1, ð9Þ

TiZCi�di 8iAN , ð10Þ

Xn

i ¼ 1

xikZ

Xn

i ¼ 1

xi,kþ1 8k¼ 1,2,. . .,n�1 : ð11Þ

In the above model, constraint (1) states that an accepted job
is scheduled in exactly one position on both machines 1 and 2,
while a rejected job is not put into any position. Constraint (2)
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