
A general parallelization strategy for random path based geostatistical
simulation methods

Grégoire Mariethoz n

Centre for Hydrogeology, University of Neuchâtel, 11 Rue Emile Argand, CP 158, CH-2000 Neuchâtel, Switzerland

a r t i c l e i n f o

Article history:

Received 16 July 2009

Received in revised form

17 November 2009

Accepted 21 November 2009

Keywords:

Geostatistics

Simulation

Parallelization

Sequential simulation

Multiple-point

Multiple-points

MPI

Speed-up

Parallel computing

Random path

a b s t r a c t

The size of simulation grids used for numerical models has increased by many orders of magnitude in

the past years, and this trend is likely to continue. Efficient pixel-based geostatistical simulation

algorithms have been developed, but for very large grids and complex spatial models, the

computational burden remains heavy. As cluster computers become widely available, using parallel

strategies is a natural step for increasing the usable grid size and the complexity of the models. These

strategies must profit from of the possibilities offered by machines with a large number of processors.

On such machines, the bottleneck is often the communication time between processors. We present a

strategy distributing grid nodes among all available processors while minimizing communication and

latency times. It consists in centralizing the simulation on a master processor that calls other slave

processors as if they were functions simulating one node every time. The key is to decouple the sending

and the receiving operations to avoid synchronization. Centralization allows having a conflict

management system ensuring that nodes being simulated simultaneously do not interfere in terms

of neighborhood. The strategy is computationally efficient and is versatile enough to be applicable to all

random path based simulation methods.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The size of the simulation grids used for geological models
(and more generally for spatial statistics) has increased by many
orders of magnitude in the last years. This trend is likely to
continue because the only way of modeling different scales
together is to use high-resolution models. This is of utmost
importance in applications such as hydrogeology, petroleum and
mining, due to the critical influence of small scale heterogeneity
on large scale processes (e.g. Mariethoz et al., 2009a).

Efficient pixel-based geostatistical simulation algorithms have
been developed, but for very large grids and complex spatial
models, the computational burden remains heavy. Furthermore,
with increasingly sophisticated simulation techniques including
complex spatial constraints, the computational cost for simulating
one grid node has also raised. As multicore processors and
clusters of computers become more and more available, using
parallel strategies is necessary for increasing the usable grid size
and hence allowing for models of higher complexity.

Parallel computers can be divided into two main categories:
shared memory machines and distributed memory architectures.
Shared memory machines have the advantage of ease and rapidity

of the communications between the different computing units.
Nevertheless, their price is extremely high and the total amount
of memory as well as the total number of processors are limited.
Therefore, most of the time it is distributed memory machines
(or clusters computers) that are used in the industry or in the
academic world. As such machines do not have a common shared
memory space, the processors have to communicate by sending
and receiving messages. The communication time between
processors can be important and is often the bottleneck in a
program execution.

In this paper, we propose a parallelization strategy applicable
in the context of sequential simulation methods and based on the
distribution of the grid nodes among all available processors.
The method minimizes communication and latency times and can
be applied using shared or distributed memory architectures,
or a combination of both. It consists in centralizing the simulation
on a master processor that calls other slave processors as if they
were functions simulating one node each time. The key is to
decouple the sending and the receiving operations to avoid waiting
for synchronization. Centralization allows having a conflict manage-
ment system making sure that nodes being simulated simulta-
neously do not interfere in terms of neighborhood.

The strategy is computationally efficient and is versatile
enough to be applicable to all random path based simulation
methods. It is illustrated with an example using the Direct
Sampling approach (Mariethoz, 2009; Mariethoz and Renard,

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cageo.2009.11.001

n Tel.: +41 32 718 26 10.

E-mail addresses: gregoire.mariethoz@minds.ch, gregoire.mariethoz@unine.ch.

Computers & Geosciences 36 (2010) 953–958

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2009.11.001
mailto:gregoire.mariethoz@minds.ch


ARTICLE IN PRESS

2010), which is a simulation algorithm using multiple-points
(MP) statistics.

2. Parallelizing sequential simulations

Sequential simulation is a class of methods that is used to
generate realizations of a random field (Deutsch and Journel,
1992; Caers, 2005; Remy et al., 2009). The general principle of the
method is to discretize the random field on a grid and to draw
successively (sequentially) for each node x of the grid an outcome
of the random variable Z in a local cumulative conditional density
function (ccdf). This local ccdf is conditional to the previously
simulated nodes and to local data if those are available. Usually, a
truncation is made and the ccdf is computed only from the values
located in a neighborhood N(x) of limited extension.

The local ccdf is determined using a spatial model, termed m,
that describes the spatial structure of the random field. Grid nodes
are often simulated in a random order, but alternative simulation
paths can also be used (Pickard, 1980; Daly, 2004).

Depending on the sequential simulation technique used, m can
be for example one or a set of variograms in the case of SGS/SIS
simulations (Isaaks, 1984; Journel and Alabert, 1990), with possibly
some auxiliary information (e.g. Mariethoz et al., 2009b), plus a
lithotype rule for plurigaussian simulations (Le Loc’h et al., 1994;
Armstrong et al., 2003), a training image or its associated data
events catalogue for MP simulations (Strebelle, 2002; Zhang et al.,
2006; Arpat and Caers, 2007; Straubhaar et al., 2008; Mariethoz and
Renard, 2010), or a set of transition probabilities (Carle and Fogg,
1997).

Each sequential simulation method has its own way of
computing the value z(m,N(x)) that will sequentially be attributed
to each node x. Nodes are simulated in an order defined by a
random path initialized at the beginning of the simulation. Once
a value has been attributed to a node, this node becomes
conditioning for the nodes that come later in the simulation
process, i.e. it will be included in the ensemble N(x) for the next
nodes to simulate. This is the reason why these simulation
techniques are termed sequential.

Parallelization of such simulations is possible at three levels.
The realization level is the easiest to parallelize. It consists in
having each realization of a Monte-Carlo analysis computed by a
different processor. As every realization is, by definition, inde-
pendent of the others, no communications between processors
are needed. The maximum number of processors that can be used
with this strategy is equal to the desired number of realizations.
This strategy is widely used (e.g. Mariethoz et al., 2009a) and will
not be discussed further in this paper.

Parallelizing a simulation at the path level means to divide the
grid in zones and to attribute a different zone to each processor.
By now, this strategy has been implemented by simulating groups
of grid nodes at the same time (Dimitrakopoulos and Luo, 2004;
Vargas et al., 2007).

The third level of parallelization is the node level. The
simulation of each single node is parallelized. For example, the
inversion of a large kriging matrix for SGS or the search for a data
event in the multiple-points data events catalogue can be shared
among many processors (Straubhaar et al., 2008). Speculative
parallel computing can also be applied in the context of simulated
annealing (Ortiz and Peredo, 2008). In all of these cases, the
efficiency of the parallelization is limited when a large number of
processors are available, because the size of the problem to solve
for each individual processor becomes small compared to the
communications time between processors.

These different strategies are not mutually exclusive. For
example, the path can be distributed among different parallel

machines, who themselves distribute the simulation of their
individual nodes on local processors.

This paper focuses on parallelization strategies at the path
level. The sequential character of the simulation process is a
challenge for these strategies because of the dependence of the
value of z(x) with all previously simulated nodes. Another issue is
that the time taken to simulate a node is not necessarily uniform,
depending on the simulation method. Some nodes can be
simulated much slower than others, which have for example a
neighborhood less compatible with the spatial structure model m.
In some cases, the number of neighbors can be different from one
node to another, incurring variations in computational load.
This problem becomes more acute when the simulation algorithm
is run on heterogeneous architectures mixing processors of
different performance.

Parallelizing the random path will inevitably lead to conflicts
when a node has to be simulated by a processor while nodes of its
neighborhood are being simulated by other processors. Moreover,
certain algorithms, such as the Gibbs sampler (Geman and
Geman, 1984) or the syn-processing (Mariethoz, 2009), require
to re-simulate nodes that do not match certain conditions. This
complicates the problem as it leads to changes in the simulation
path, making it impossible to define in advance a conflicts-free
path (a strategy adopted by Vargas et al., 2007). In certain cases,
the simulation method can be adapted to be less sensitive to these
conflicts (Dimitrakopoulos and Luo, 2004). But our goal is to find a
general strategy that is applicable to all random path based
simulation methods without generating conflicts.

3. Nodes distribution

The solution proposed in this paper is to have one processor,
the master, managing the path, the search for neighbors and the
conflicts, while all other processors, the slaves, devote their
calculation power to the simulation itself. If nCPU processors are
available, the processor 0 is the master and processors 1 to nCPU-1
are the slaves. The most obvious strategy would be to group
nCPU-1 nodes and distribute them among slave processors.
Unfortunately, this strategy is not efficient with a large number
of processors because it involves that all slaves must have
returned their result to the master before the next group of
nodes is sent to slaves for simulation. If one of the slaves uses
more time than the others to simulate his node, all processors
have to wait for it to finish. Moreover, the master does not
perform any calculations while slaves are working, and the slaves
also have to wait until the master has finished updating the
simulation with the received group of nodes and has defined the
neighborhoods for the next group.

Instead of groups, we propose that the master sends
sequentially one node to each slave, and then waits for a result
coming from any slave processor. Once this result is obtained, the
master includes it in the simulated grid, finds the neighborhood of
the next node and sends it to the same slave processor from
which the result just came from. Then it waits again for a result
coming from any slave processor. By avoiding synchronization,
this strategy ensures that a minimum number of processors are
waiting. The master practically does not wait when there are a
lot of slaves. Moreover, while the master works on defining
neighborhoods and attributing nodes to slave processors, all
slaves except one are working. The slaves do not wait for each
other as they perform their workload independently. The time
devoted to communications is minimized because while the
master sends or receives information from a slave, all other slaves
carry on their work undisturbed.

G. Mariethoz / Computers & Geosciences 36 (2010) 953–958954



Download English Version:

https://daneshyari.com/en/article/508164

Download Persian Version:

https://daneshyari.com/article/508164

Daneshyari.com

https://daneshyari.com/en/article/508164
https://daneshyari.com/article/508164
https://daneshyari.com

