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For a single-commodity stochastic flow network, the system capacity is the maximum flow from the
source to the sink. We construct a p-commodity stochastic flow network with unreliable nodes, in
which branches and nodes all have several possible capacities and may fail, to model a supply chain.
Different types of commodities, transmitted through the same network simultaneously, consume the
capacities of branches and nodes differently. That is, the capacity weight depends on branches, nodes
and types of commodity. We first define the system capacity as a vector and propose a performance
index, the probability that the upper bound of the system capacity is a given pattern. Such a
performance index can be easily computed in terms of upper boundary states meeting the demand
exactly. An efficient algorithm based on minimal cuts is thus presented to generate all upper boundary
states. The manager can apply this performance index to measure the transportation level of a supply
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1. Introduction

It is a crucial issue for a manager to derive the current system
capacity (or residual system capacity) for a supply-demand
system in order to respond quickly whether the customer’s order
can be accepted or not. In a binary-state network (without flow
through it) with unreliable nodes, the branches and nodes are all
in failure or operational state. Aggarwal et al. (1975) proposed a
concept in which the failure of a node implies the failure of
branches incident from it. Then the original network with
unreliable nodes can be modified to a conventional network with
perfect nodes. However, this concept is only adopted for a binary-
state network. The system capacity has only values 0 and 1 to
represent failure and operational state, respectively.

In a single-commodity binary-state flow network, each branch
has a designated capacity which will have zero level only due to
any failure. The system capacity is the maximum flow from the
source to the sink. However, the branch should be stochastic due
to that branch may be in failure, maintenance, partially reserved
by other customers, etc. Then the network is thus called a single-
commodity stochastic flow network. Since its system capacity is
not a fixed number, several authors (Lin et al., 1995; Lin, 1998;
Xue, 1985; Yeh, 1998) presented algorithms to evaluate the
system reliability, the probability that the lower bound of the
system capacity equals the demand d, for perfect nodes case. Jane
et al. (1993), Lin (20014, 2007b,c) and Yeh (2001) used minimal
cuts (MCs) to generate upper boundary states for d in order to
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evaluate the system unreliability, the probability that the upper
bound of the system capacity equals the demand d, for perfect
nodes case. A MC is a set of branches whose proper subsets are no
longer cuts, and an upper boundary state for d is a maximal
system state meeting the demand d exactly. Lin (2002) extended
the unreliability problem to the unreliable nodes case. In practice,
the system reliability and unreliability are appropriate perfor-
mance indices to measure the quality level of a single-commodity
stochastic flow network.

Moreover, in a p-commodity stochastic flow network, multiple
types of commodity are transmitting through the same network
simultaneously where p is the number of types of commodity. In
the past few decades, many researchers (Assad, 1978; Ford and
Fulkerson, 1974; Held et al., 1974; Hu, 1963; Jarvis, 1969;
Rothechild and Whinston, 1966) have solved the p-commodity
maximum flow problem to find the maximal total flow under the
assumption that each branch is deterministic. However, the
maximal total flow is not a suitable performance index in case
different type of commodity consumes the branch capacity
differently. For instance, as the data shown in Table 1, the total
flow in network 1 is larger than that in network 2. But this fact
does not imply that network 1 provides a better transmission
ability if commodity 2 consumes more capacity than commodity
1 does.

In this paper we concentrate on a p-commodity stochastic flow
network with unreliable nodes (named a PMFUN throughout this
paper) to study on the system capacity for a supply chain.
Especially, the consumed capacity by different type of commodity
varies with branches and nodes. In other words, the capacity
weight depends on commodity type and network components
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Table 1
The total flow for two networks.

Network 1 Network 2
Flow of commodity 1 5 2
Flow of commodity 2 4 6
Total flow 9 8

(branches or nodes). Many real-world systems such as logistics
systems, computer systems, and telecommunication systems can
be modeled as a PMFUN. Bailey and Francis (2008) presented
case-study-based evidence to manage information flows for
improved value chain performance. This paper is organized as
follows. The system capacity will be discussed and defined in
Section 3. Then a new performance index, the probability that the
upper bound of the system capacity equals a given pattern, is
proposed. Such an index can be easily derived in terms of upper
boundary states for (dy, da,...,d,), where d; the required quantity
of commodity k at the sink t, k=1, 2,...,p. An algorithm based on
MCs to generate all upper boundary states for (di, da,..., dp)
is presented in Section 4. Time complexity and storage complexity
of the proposed algorithm are both analyzed. A container
transportation example is shown in Section 5 to illustrate the
proposed algorithm and how to compute the performance index.

2. Assumptions

Let G=(B, Q, M, W) denote a PMFUN where B={b;|1 <i < n} the
set of branches, Q={b;jjn+1 <i<n+q} the set of nodes except for
the source s and the sink t, M=(My, M,..., Mp.4) with M; the
maximal capacity of b; and W={w}|i=1, 2,..., n+q, k=1, 2,..., p}
with Wf the capacity weight denoting the consumed capacity on b;
per commodity k. The current capacity of the component b; is
denoted by x; and the vector X=(X1, X2,..., Xq+4) is called the
system state. The PMFUN is required to further satisfy the
following assumptions:

1. The branches and nodes all have several possible capacities
and may fail.

2. All p types of commodity are transmitted from s to t.

3. The capacities of different components are statistically in-
dependent.

4. The current capacity x; takes values from {0, 1, 2,..., M;}, i=1,
2, ..., n+q.

5. The flows in G must satisfy the flow-conservation law (Ford
and Fulkerson, 1962).

Vectors operations are done according to the following rules:

X<Y (X1, X2, Xneq) S (V1. V2o, Ynag): Xi<Yifori=1,2,...,n+q
X<Y (X1, X2,..., Xn+q) <(¥V1, ¥2,..., Yn+q): X< Y and x; < y; for at
least one i

(dl, dz,..., dp) < (d1/, dz/,..., dp/
(dlv dy,..., dp) <(dy,dy,..., D
& di < dy for at least one k
(d1, da,..., dp)*+(dy/, do,..., dy): (dy+dy/, dy+dy, ..., dp+dy)

~—

tdy<dy for k=1,2,...,p
. (d1, dz,..., dp) S(d{, dz/,..., dp/)

’

—

3. A PMFUN model

Since the nodes can fail, we redefine a cut as a set of branches
and nodes the removal of which will disconnect s and t. Then a MC
is also redefined as a set of branches and nodes whose proper
subsets are no longer cuts. Suppose that Ky, K>, ..., K, are m MCs.

With respect to each MC K; = {b;1,b;2,...,bm,} where n, is the
number of components in K,, the vector F.=(F!,F?,...,FF) is
called a flow vector where F¥ = (fX fk. ... fk ) with frlf' denoting

the flow of commodity k through by, j=1, 2,..., n, k=1, 2,..., p. The
vector F; is feasible under the system state X=(x1, Xa,..., Xn+q) if

p

> wifl <xgforj=1,2,....n;. (1)
k=1
This inequality says that the total quantity >-F _, wk r’; of capacity
on b, consumed by all types of commodities cannot exceed the
current capacity x;.

Under the system state X, the MC K, is said to support the
demand (d4, dy,..., dp) if there exists an F, feasible under X such
that

ne
Zfr’]‘-:dkfork:LZ,...,p. 2)
=

Under X, K. is said to support at most (d4, da,...,d,) (i.e., K, supports
(di, da,...,d,) but cannot support any (di, dJ,...,dy,) with
(di, do,....dy") > (dy, da,....dp)) if K, supports (dy, d>,...,d,) and
there exists no F; feasible under X such that

nr

E fr}:d1+1, fork=1

=1

ny 3
rl;':dk’ fork=2,3,...,p.

=1

Note that K, supports (d;+1, dy,...,d,) if F; satisfies Eq. (3).

The system state X is said to support (dy, da,..., dp) if under X,
all MCs support (d4, dy,..., dp). Furthermore, X is said to support at
most (dy, da,..., dp) if under X, all MCs support (dy, d>,..., dp) and at
least one MC supports at most (dy, dy,..., dp). In a PMFUN, the
system capacity T(X) under X is defined to be (d;, d>,..., dp) if X
supports at most (d;, do,..., dp).

3.1. Upper boundary states for (dy, do,..., dp)

Similar to single-commodity case, the performance indices:
Ly gy,..q, =Pr{T(X) = (d1,d3,...,dp)}  and Uy, g,..a, = Pr{TX)
<(dy,dy,...,dp)} can be adopted to evaluate the quality level of
a PMFUN. The former is the probability that the lower bound of
the system capacity equals (dy, da,..., dp) and the latter is the
probability that the upper bound of the system capacity equals
(d1, da,..., dp). Lin (2001b) had proposed an algorithm in terms of
minimal paths to evaluate Ly 4, g4, for perfect nodes case. A
minimal path is a path from the source to the sink without cycles.
We focus on Uy, 4,4, for a PMFUN in terms of minimal cuts.
However, it is not a wise way to enumerate all X such that
T(X)<(dy, dy,..., dp) if the network is large. It will be more
efficient to compute Uy, g,.q4, if all maximal vectors in
{XIT(X) < (d4, da,..., dp)} can be found in advance.

We define the system state X as an upper boundary state for
(d1, da,..., dp) if (i) T(X)=(d1, da,..., dp) and (ii) T(Y) > (d1, da, ..., dp)
for any system state Y with Y>X. Hence, the set of upper
boundary states for (dq, da,..., dp) is the set of maximal ones in
XITX)=(d1, da,..., dp)} and also the set of maximal ones in
{XIT(X) < (d1, da,..., dp)}. Thus, we have the following simple result:

Lemma 1. Each system state X less than any upper boundary state
for (d1, da,..., dp) supports at most (dy, da,..., dp).

3.2. Theory

The remainder work for solving the system capacity problem is
how to generate all upper boundary states for (di, da,..., dp).
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