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Abstract

We present MATLAB codes for finite-difference time-domain (FDTD) modeling of ground-penetrating radar (GPR) in

two dimensions. Surface-based reflection GPR is modeled using a transverse magnetic (TM-) mode formulation. Crosshole

and vertical radar profiling (VRP) geometries are modeled using a transverse electric (TE-) mode formulation. Matrix

notation is used in the codes wherever possible to optimize them for speed in the MATLAB environment. To absorb waves

at the edges of the modeling grid, we implement perfectly matched layer (PML) absorbing boundaries. Although our codes

are two-dimensional and do not incorporate features such as dispersion in electrical properties, they capture many of the

important elements of GPR surveying and run at a fraction of the computational cost of more elaborate algorithms. In

addition, the codes are well commented, relatively easy to understand, and can be easily modified for the user’s specific

purpose.
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1. Introduction

Ground-penetrating radar (GPR) is a popular
geophysical method for high-resolution imaging of
the shallow subsurface. The GPR technique can be
divided into two main modes of operation:
(i) surface-based reflection surveying, where the
transmitter and receiver antennas are located on the
surface of the earth and the subsurface is imaged in
terms of changes in its electrical properties, and

(ii) borehole surveying, where one or both antennas
are located in boreholes and subsurface properties
are estimated tomographically. Of interest in our
research is the application of both surface and
borehole GPR to hydrogeological problems. Speci-
fically, we are interested in using these techniques to
assist in the development of hydrogeological models
that predict groundwater flow and contaminant
transport. A critical step in using GPR for this
purpose is determining the link between the hydro-
geological properties that govern these processes,
and the information contained in a GPR data set.

Numerical GPR models provide one means of
exploring the link between subsurface properties
and GPR data. We can create a model of a
subsurface region of interest, where we define the
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subsurface in terms of its lithological or hydro-
geological properties. We can then transform this
model into one that represents the subsurface in
terms of its electrical properties. GPR modeling can
then be used to simulate the acquisition of data in
this subsurface region. The synthetic data that are
obtained can be used to advance our understanding
of the way in which information about the spatial
variability of subsurface properties is captured by,
and can be extracted from, GPR data.

A number of approaches have been presented for
the numerical modeling of GPR data. These include
ray-based methods (Goodman, 1994; Cai and
McMechan, 1995), frequency-domain methods
(Powers and Olhoeft, 1994; Zeng et al., 1995),
integral methods (Ellefsen, 1999), and pseudospec-
tral methods (Carcione, 1996; Casper and Kung,
1996; Lui and Fan, 1999). What has become by far
the most common approach for GPR modeling over
the past decade, however, is the finite-difference
time-domain (FDTD) technique (e.g., Wang and
Tripp, 1996; Bourgeois and Smith, 1996; Bergmann
et al., 1996; Teixeira et al., 1998; Holliger and
Bergman, 2002). Reasons for this include that the
FDTD approach is relatively conceptually simple,
accurate for arbitrarily complex models, and cap-
able of accommodating realistic antenna designs
and features such as dispersion in electrical proper-
ties (Taflove, 1995). What is lacking, however, are
FDTD modeling codes for GPR, freely available for
the public use, that are easy to understand and
modify.

Here, we present FDTD codes, written in the
MATLAB programming language, for basic surface
reflection and borehole GPR modeling in two
dimensions. Although 2-D modeling is limited in
the sense that it cannot fully account for antenna
behavior and out-of-plane variations in material
properties, our codes capture many of the important
features of GPR surveying and run at a fraction of
the computational cost of fully 3-D algorithms. The
codes feature perfectly matched layer (PML)
absorbing boundaries to avoid reflections from the
edges of the modeling grid. To optimize the
programs for speed in MATLAB, matrix notation
is used wherever possible. To begin, we discuss the
theory behind our codes, including the governing
analytical equations, their finite-difference approx-
imations, numerical stability and dispersion criteria,
and boundary conditions. Next, we briefly discuss
how the FDTD equations are implemented in the
MATLAB environment. Finally, we present two

examples of the use of our codes, one showing
modeling of a reflection GPR survey and the other
modeling of a crosshole GPR survey.

2. Theory

2.1. Governing equations

We begin the theory behind our GPR modeling
codes with Maxwell’s curl equations in the fre-
quency domain, which are

r � E ¼ �iomH, (1)

r �H ¼ sEþ io�E, (2)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, o is angular frequency, �, m, and s
are the dielectric permittivity, magnetic permeabil-
ity, and electrical conductivity parameters, respec-
tively, and E and H are the electric and magnetic
field vectors. To implement PML absorbing bound-
aries in our codes, we consider the general case of a
complex stretched coordinate space (e.g., Chew and
Weedon, 1994; Gedney, 1998), where the r operator
takes the following form:
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where

sk ¼ kk þ
sk

ak þ io�0
; k ¼ x; y; z (4)

are complex coordinate stretching variables that
vary only in the k direction (Kuzuoglu and Mittra,
1996). Here, �0 is the dielectric permittivity of free
space, and sk, kk, and ak are parameters that can be
specified to allow for wave propagation in the
interior of the modeling grid and wave absorption in
the PML boundary regions. It should be stressed
that sk, kk, and ak are not true electrical properties.
Rather they are parameters that, through complex
coordinate stretching, add additional degrees of
freedom to Maxwell’s equations to allow for PML
boundary implementation.

Taking the components of Eqs. (1) and (2) using
the identity in Eq. (3), and assuming that there is no
variation in the y direction for 2-D modeling, we
arrive at the following two decoupled sets of partial-
differential equations involving the fHx;Hz;Eyg and
fEx;Ez;Hyg field components:

iomHx ¼ �
1

sz

qEy

qz
, (5a)
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