
LBflow: An extensible lattice Boltzmann framework for the simulation of
geophysical flows. Part I: theory and implementation$

E.W. Llewellin

Department of Earth Sciences, Durham University, DH1 3LE, UK

a r t i c l e i n f o

Article history:

Received 24 October 2006

Received in revised form

20 July 2009

Accepted 18 August 2009

Keywords:

Lattice Boltzmann method

Geophysical fluid dynamics

Flow simulation

Flow visualization

Computational steering

a b s t r a c t

This article presents LBflow, a flexible, extensible implementation of the lattice Boltzmann method. The

code has been developed with geophysical applications in mind, and is designed to be usable by those

with no specialist computational fluid dynamics expertise. LBflow provides a ‘virtual laboratory’ which

can be used, rapidly and easily, to obtain accurate flow data for the geometrically complex, three-

dimensional flows that abound in geophysical systems. Parameters can be ‘steered’ by the user at

runtime to allow efficient and intuitive exploration of parameter space.

LBflow is written in object-oriented C++ and adopts a modular approach. Lattice Boltzmann

algorithms for distinct classes of material are encoded in separate modules, which implement a

standard interface, and which are linked to LBflow dynamically at runtime. This allows users with

programming skill and expertise in the lattice Boltzmann method to create and share new LBflow

modules, extending functionality. A companion application, LBview, provides a graphical user interface

to LBflow and renders a user-configurable visualization of the output. LBflow’s output can be piped

directly to LBview allowing realtime visualization of steered flow. LBview also facilitates analysis of the

data generated by LBflow.

This article presents an overview of the theory of the lattice Boltzmann method and describes the

design and operation of LBflow. The companion paper, ‘Part II’, describes the practical usage of LBflow

and presents detailed validation of its accuracy for a variety of flows.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last 20 years, a new class of computational fluid
dynamic models has emerged, based upon the lattice Boltzmann
equations (McNamara and Zanetti, 1988; Higuera and Jimenez,
1989; Higuera et al., 1989; Benzi et al., 1992; see Succi, 2001, for an
overview). Intense research effort has been expended on the
development of lattice Boltzmann algorithms with the result that
a large inventory of model types is now available to the modeller.
Algorithms exist for the simulation of single phase Newtonian and
non-Newtonian fluids, for two-phase liquid–gas and liquid–solid
mixtures and for many more-esoteric materials. Depending on the
algorithm, creeping, inertial or turbulent flows may be simulated.
Succi (2001) and Yu et al. (2003) provide accessible overviews.

In general, the lattice Boltzmann method (introduced in
Section 2) is easier to implement than conventional computational
fluid dynamic techniques, is highly amenable to parallelization and
can deal with arbitrarily complex flow geometries without
significant penalty. These attributes, combined with the flexibility
of the lattice Boltzmann method, make it suitable for the

investigation of a wide range of geophysical flow problems. The
method is particularly well-suited to problems involving flow
through complex geometries (e.g. permeating groundwater flow,
melt segregation) and flows in which multiphase interactions are of
interest (e.g. particle laden flows, bubble suspensions). Sophisti-
cated lattice Boltzmann research-code implementations are avail-
able (e.g. PELABS: Dupuis and Chopard, 2000; and OpenLB1),
however, since these are typically organized as libraries, their use
requires programming expertise and time investment to learn the
application programming interface. Commercial codes are also
available.

Section 3 of this article introduces LBflow, an extensible lattice
Boltzmann implementation designed with geophysical applica-
tions in mind. LBflow comprises a core executable, which controls
simulation flow and lattice operations, and a suite of ‘physics
modules’ which provide implementations of various lattice
Boltzmann algorithms for different materials. The simulation
parameters and required outputs are specified by the user via a
plain-text simulation file, which is parsed by the core executable.
This allows sophisticated numerical experiments to be conducted

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cageo.2009.08.004

$Code available from server at http://www.dur.ac.uk/ed.llewellin/lbflow/

E-mail address: ed.llewellin@durham.ac.uk 1 http://www.openlb.org/

Computers & Geosciences 36 (2010) 115–122

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2009.08.004
http://www.dur.ac.uk/ed.llewellin/lbflow/
mailto:ed.llewellin@durham.ac.uk
http://www.openlb.org/

ARTICLE IN PRESS

by those without programming experience. LBflow and its
modules are written using object-oriented C++. Physics modules
are called dynamically at runtime by the core executable and
implement a specified interface, allowing users with program-
ming experience to create further modules, adding functionality.

Philosophically, LBflow is designed to be used as a ‘virtual
laboratory’ in which complex natural flows can be simulated and
analysed by those without specialist computational fluid dy-
namics training. Several features of LBflow exemplify this ap-
proach: output from LBflow can be visualized and analysed
through a companion application, LBview, which has an intuitive
graphical user interface; certain key parameters can be ‘steered’
by the user during execution and the results can be piped
dynamically through LBview, allowing interactive exploration of
parameter space; LBflow is ‘dimensional’, i.e. parameters are
specified, and results are presented, in SI units.

This article is Part I of a two-part series. Part II (Llewellin,
2009) describes the practical usage of LBflow and presents
detailed validation of the code against analytical solutions and
experimental data for a range of three-dimensional flows. In both
parts, in line with LBflow’s experimental philosophy, considerable
attention is paid to the quantification of errors and to practi-
calities, such as obtaining a pragmatic balance between accuracy,
resolution and system resources.

2. The lattice Boltzmann method

Historically, the lattice Boltzmann method developed heuristi-
cally from attempts to improve the performance of the lattice gas
cellular automaton (McNamara and Zanetti, 1988; Higuera and
Jimenez, 1989). Subsequent analysis has put the lattice Boltzmann
method on a sound theoretical footing by showing that, providing
that certain conditions are met, the lattice Boltzmann equations are
formally equivalent to the Navier–Stokes equations, discretized in
time and space (He and Luo, 1997; Chen and Doolen, 1998). The
literature contains several excellent and rigorous theoretical
treatments of the lattice Boltzmann method (see earlier references)
which this section does not aim to duplicate. Rather, the relevant
equations are presented and their physical meaning is discussed,
echoing the method’s heuristic origins.

According to the kinetic theory of gases, a control volume of
gas, with spatial dimensions larger than the molecular mean free
path and smaller than the hydrodynamic lengthscale of the fluid,
contains a large number of molecules moving in all directions and
at all velocities and exchanging momentum through collisions
with one another. The probability that a molecule within this
volume, centred on position r, at time t, has velocity v, is described
by the velocity distribution function f (r; v; t). Collisions between
the molecules act rapidly to bring the velocity distribution
function to an equilibrium described by the Maxwell–Boltzmann
distribution:

f eq ¼
r

(2pRT)3=2
exp �

(v� u)2

2RT

" #
; (1)

where r is the gas density, R the universal gas constant, T the
absolute temperature of the gas and u is the bulk velocity of the
gas packet (u¼ 0 for a gas at rest). For each orthogonal component
a of velocity, the Maxwell–Boltzmann distribution is a normal
distribution about ua. Note that the bulk velocity of the gas must
be much smaller than the root mean square velocity of the
molecules. Fig. 1a and b show, schematically, the Maxwell–
Boltzmann distribution of velocities for a point in a two-
dimensional flow around a cylinder; note that Fig. 1b shows the
distribution in velocity space.

The lattice Boltzmann method discretizes space into a regular
lattice of nodes with spacing Dx. The lattice must have a high
degree of symmetry and, typically, lower-dimension projections of
a four-dimensional face-centred hypercubic lattice are used. All of
the fluid molecules within a volume Dx3 centred on a node are
treated as if they exist at the node. Each node, therefore, is
analogous to the control volume discussed above, and has a
velocity distribution associated with it. Since time is also
discretized, into timesteps of duration Dt, velocity space is also
discrete. It is important to note that there are two distinct sets of
units that are used in the numerical implementation of the lattice
Boltzmann method: physical units and simulation units (denoted
by the symbol ‘ ^ ’ above a quantity). For simplicity the simulation
units are usually chosen as Dx̂ ¼ 1 and Dt̂ ¼ 1. Distances in the
simulation are, therefore, represented in units of lattice-spacings
and times in units of timesteps. The mapping between simulation
and physical units, and vice versa, is discussed later in this section.

In a three-dimensional lattice, each node has 26 immediate
neighbours. If we impose the constraint that information may
only propagate from a node to its nearest neighbours in a single
timestep, this gives 27 ‘allowed’ velocities (including a ‘rest
velocity’ for stationary molecules). The velocities are denoted
êi (i¼ 0; . . . ;n); where n is the number of allowed velocities. On a
lattice, the continuous velocity distribution f (r; v; t) can be
discretized into components fi, which can be thought of as the
fraction of the total mass of fluid at a node that is moving with
each of the allowed velocities. Fig. 1c shows the discretization of
the continuous Maxwell–Boltzmann distribution of velocities for
a two-dimensional model, with nine allowed velocities.

Although each node in a three-dimensional lattice has
26 nearest neighbours, the most commonly used three-dimen-
sional lattice Boltzmann models have only 15 or 19 allowed
velocities. Fig. 2 shows the allowed velocities for a so-called D3Q15

lattice (three-dimensional, 15 velocity), which is used by LBflow.
The 15 velocities are:

ê0 ¼ ½0;0;0� ê5 ¼ ½0;0;1� ê10 ¼ ½1;�1;�1�

ê1 ¼ ½1;0;0� ê6 ¼ ½0;0;�1� ê11 ¼ ½�1;�1;1�

ê2 ¼ ½�1;0;0� ê7 ¼ ½1;1;1� ê12 ¼ ½1;1;�1�

ê3 ¼ ½0;1;0� ê8 ¼ ½�1;�1;�1� ê13 ¼ ½1;�1;1�

ê4 ¼ ½0;�1;0� ê9 ¼ ½�1;1;1� ê14 ¼ ½�1;1;�1�:

(2)

Fig. 1. Diagrammatic representation of velocity distribution function for a small

packet of flowing fluid. (a) Two-dimensional flow around a cylinder; (b) velocity

distribution, in velocity space, for packet of fluid with mean velocity u; (c) same

distribution discretized onto a two-dimensional, nine-velocity lattice.

E.W. Llewellin / Computers & Geosciences 36 (2010) 115–122116

Download English Version:

https://daneshyari.com/en/article/508278

Download Persian Version:

https://daneshyari.com/article/508278

Daneshyari.com

https://daneshyari.com/en/article/508278
https://daneshyari.com/article/508278
https://daneshyari.com

