
Parallel drainage network computation on CUDA

L. Ortega �, A. Rueda

Departamento de Informática, Edif. A3-140, Campus de Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain

a r t i c l e i n f o

Article history:

Received 11 July 2008

Received in revised form

16 July 2009

Accepted 17 July 2009

Keywords:

GPU

GPGPU

CUDA

Drainage network

D8 algorithm

a b s t r a c t

Drainage networks determination from digital elevation models (DEM) has been a widely studied

problem in the last three decades. During this time, satellite technology has been improving and

optimizing digitalized images, and computers have been increasing their capabilities to manage such a

huge quantity of information. The rapid growth of CPU power and memory size has concentrated the

discussion of DEM algorithms on the accuracy of their results more than their running times.

However, obtaining improved running times remains crucial when DEM dimensions and their

resolutions increase. Parallel computation provides an opportunity to reduce run times. Recently

developed graphics processing units (GPUs) are computationally fast not only in Computer Graphics but

in General Purpose Computation, the so-called GPGPU. In this paper we explore the parallel

characteristics of these GPUs for drainage network determination, using the C-oriented language of

CUDA developed by NVIDIA. The results are simple algorithms that run on low-cost technology with a

high performance response, obtaining CPU improvements of up to 8�.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Digital elevation models (DEMs) provide useful information
about the morphology of a terrain surface, including hydrology.
Considering a DEM as a grid model whose cells represent the
elevation of a square surface, the main principle in hydrology can
be established: water flows down the steepest slope on the
surface. Extracting a digital representation of the flow network is
considered an essential step in the study of watershed delinea-
tion, erosion sites, mineral or pollution distribution, the cost
estimation and design of constructing new roads, the simulation
of floodplains in paddy fields (Ishida et al., 2003), etc.

Most of the methods we find in the literature are based on
grids. In comparison with triangulated networks (TINs) or contour
maps, grid models have become more important as computer
capabilities have increased at the same time that memory cost has
decreased. In the early nineties grid dimensions were a few
hundreds of thousands of cells, while nowadays most personal
computers are capable of handling hundreds of millions of cells. In
any case, massive grid terrains must be partitioned into squared
cell areas as in Curkendall et al. (2003) and Arge et al. (2001b), or
into watersheds for computing the watershed graph as in Arge
et al. (2001a). The partial solutions are processed in parallel and
linked together to create a complete solution.

In many cases, traditional methods for obtaining drainage
networks are still extensively used because of their simplicity and

reduced limitations, as pointed out in Martz and Garbrecht
(1992). There are mainly two hydrological approaches derived
from raster DEMs based on flow accumulation. The first was
introduced by O’Callaghan and Mark (1984) using a neighborhood
of eight cells as possible flow directions, the denominated D8
model. In order to obtain a channel network, a threshold value
should be defined. Those cells exceeding this threshold are part of
a drainage channel. The method also considers some processes
previous to the drainage accumulation: (1) an optional smoothing
phase to reduce artificial pits generated by the data acquisition
system; (2) the drainage direction assignment to establish which
of the eight neighboring cells receives the accumulated water; (3)
the labeling of point drainage features as pits, ridges or forks; (4) a
special process for removing pits assuming that water finds
overflow points from the basin of a pit. After that, an iterative
process simulates how each cell cði; jÞ drains into a neighbor cell
while some other cell (or cells) may drain into cði; jÞ.

The results of applying this method are sometimes non-
realistic in divergent areas where eight directions seem to be
insufficient. Different procedures but similar results are found in
Martz and Jong (1988) and Jenson and Dominique (1988). The
main difference between these two approaches lies in the way
that sinks are interpreted. While in Martz and Jong (1988) all
sinks are assumed to be real topographic features which should be
treated hydrologically as ponds or reservoirs, Jenson and
Dominique (1988) approach assumes that the sinks are primarily
data errors or artifacts.

In addition, a previous morphological study should be
performed in order not to impose an arbitrary and spatially
constant drainage density, or avoid several executions of the flow

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cageo.2009.07.005

� Corresponding author. Tel.: +34 953 212890; fax: +34 953 212472.

E-mail addresses: lidia@ujaen.es (L. Ortega), ajrueda@ujaen.es (A. Rueda).

Computers & Geosciences 36 (2010) 171–178

www.elsevier.com/locate/cageo
dx.doi.org/10.1016/j.cageo.2009.07.005
mailto:lidia@ujaen.es
mailto:ajrueda@ujaen.es


ARTICLE IN PRESS

network algorithm to determine the threshold value. These
methods can determine the appropriate drainage density at
which to extract networks from digital elevation data (see
Tarboton et al., 1991), or even can be adaptive to spatial
variability in drainage density by identifying and connecting
upwards curved grid cells as in Tarboton and Ames (2001).

The second approach, introduced by Freeman (1991), can be
considered more sophisticated: the drainage of a particular cell
flows downslope to several adjacent cells of lower elevation; the
divergent flow concept. The resulting drainage network improves
the D8 model in some aspects, but needs additional computa-
tional time and obtains wide flooding areas rather than narrow
channels.

GIS applications are an important area for parallel computa-
tion because of the huge amount of information handled, the
complexity of spatial algorithms and the requirement of a
realtime response for many operations (see Healey et al., 1997).
Conversion between vector and raster formats, overlay opera-
tions, visibility computation on terrains and of course, drainage
network determination, are suitable operations for efficient
parallel implementations. Mower (1993) proposed a parallel
solution for drainage network computation using the method of
O’Callaghan and Mark (1984) and implemented it for old parallel
hardware from Thinking Machines. He focused on the subproblem
of drainage basin labeling, however, the drainage accumulation
phase, by far the most time consuming, was not given in detail.

We also adopted O’Callaghan and Mark (1984) approach for
our parallel solution using GPUs. This method is simpler, is able to
generate connected networks and is the most commonly used
because it relies on a runoff analog to define the flow paths.
Another approach could achieve to better results under specific
morphological terrain surfaces, but our main goal is to compare
running times using CPU versus GPU technology under the same
conditions. We assume that these results can be extended to
many other methods for channel network delineation as well as to
many other DEM applications. The matrix data structure of grid
DEM and the identical and repetitive procedure performed in each
cell make this problem fit perfectly with a GPGPU resolution.

NVIDIA CUDA technology is being introduced in many
different research areas. In this work we use CUDA for grid DEM
algorithms in order to solve a standard flooding problem. In
Section 2 we define some concepts about GPGPU using CUDA. In
Section 3 we analyze two different strategies using CUDA to
compute a drainage network. Next, in Section 4 we provide
computation times of GPU versus CPU to reach to some
interesting conclusions in Section 5 about the benefits of GPGPU
programming using CUDA in DEM models.

2. CUDA technology for GPGPU applications

Algorithm 1. void CUDA_Procedure (CPUdataStructures data)

1: Define and reserve memory for GPU data structures
2: Copy data from CPU to GPU global memory
3: Define numThreads and numBlocks variables
4: Execute CUDA procedure for each thread
5: Copy data results from GPU to CPU
6: Free GPU data structures

The general-purpose computing on graphics processing units
(GPGPU) is a young area of research that has attracted attention of
many research groups in the last years. Although graphics hardware
has been used for general-purpose computation since the 1970s,

the flexibility, power processing and low cost of modern graphics
processing units (GPUs) have generalized its use for solving many
problems in Signal Processing, Computer Vision, Computational
Geometry or Scientific Computing (Owens et al., 2007).

A GPU can be programmed by defining vertex, pixel or
geometry shaders (Akenine-Möller et al., 2008) in a specific
shader language like GLSL (Rost, 2006), HLSL or Cg (Fernando and
Kilgard, 2003). A shader is a program that implements a special
processing for a specific graphics primitive during the rendering
process. For instance, a vertex shader can be used to compute the
position of the vertex over time and implement complex
animations; in a similar way, diverse lighting effects can be
coded in a pixel shader to simulate specific materials like skin or
hair (Fernando, 2004; Pharr and Fernando, 2005). In the last years,
shader programming has been extensively used by graphics
programmers and has dramatically improved the visual quality
and realism of video games.

Using shader programming for GPGPU is a tricky process that
implies stating a general problem as a graphic computation, and
therefore can be difficult in many cases. The rigid memory model
is the biggest problem: GPU architecture only allows memory
reads from textures or a limited set of input parameters. In
Compute Graphics, textures are typically color images that are
mapped onto 3D surfaces to improve realism (Akenine-Möller
et al., 2008), but in shader programming they can code other input
information useful for the computation. For similar reasons
memory writes can only be performed on a fixed position in the
framebuffer. This often makes that a simple computation that can
be coded with a few lines in a CPU program could require a
complete redesign and a careful implementation in GPU. On the
positive side, the implementation effort is usually rewarded with
a superb performance, up to 100� faster than equivalent CPU
implementations in some cases.

The CUDA architecture of NVIDIA (2008) represents a major
advance for the development of GPGPU applications. For the first
time, a GPU can be used without any knowledge of computer
graphics, as a general-purpose highly parallel coprocessor that
helps the CPU in the more complex and time-expensive
computations. With CUDA a GPU can be programmed in C, in a
very similar style to a CPU implementation, and the memory
model is now simpler and more flexible.

A CUDA-enabled GPU is composed of several MIMD multi-
processors (Multiple Instruction stream, Multiple Data stream)
that enclose a set of SIMD processors (Single Instruction stream,
Multiple Data stream). Each multiprocessor has a small shared
memory that can be accessed from each of its processors, and
there is a large global memory space common to all the
multiprocessors (Fig. 1). Shared memory is very fast and is
usually used for caching data from global memory. Both shared
and global memory can be accessed by any thread for reading and
writing operations without restrictions.

A CUDA execution runs several blocks of threads. Each thread
performs a single computation and is executed by a SIMD
processor. A block is a set of threads that are executed on the
same multiprocessor and its size should be chosen to maximize
the use of the multiprocessor. A thread can store data on its local
registers, share data with other threads from the same block
through the shared memory or access the device global memory.
The number of blocks usually depends on the amount of data to
process. Each thread is assigned a local index inside the block with
three components, starting at (0, 0, 0), although in most cases only
one component (x) is used. The blocks are indexed using a similar
scheme.

A typical CUDA computation follows the steps shown in
Algorithm 1. The host function starts by allocating one or more
buffers in the GPU global memory and transfers the data to

L. Ortega, A. Rueda / Computers & Geosciences 36 (2010) 171–178172



Download English Version:

https://daneshyari.com/en/article/508285

Download Persian Version:

https://daneshyari.com/article/508285

Daneshyari.com

https://daneshyari.com/en/article/508285
https://daneshyari.com/article/508285
https://daneshyari.com

