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The kinematic correlation between faults and focal mechanisms can be quantified using scalar (vector
and tensor product) or geometric (rotation pole and angle) measures of the similarity of their
orientations. The statistical properties of the correlation may help characterise the spatio-temporal
properties of natural datasets and test their congruence with theoretical models. This paper describes
GIS and Fortran 90/95 tools for analysing the kinematic correlation of faults, and for simulating fault
movements in a homogeneous stress field. As an example, we analyse the Umbria-Marche 1997 seismic
sequence with these tools; our results show a positive spatial correlation of seismic events that
increases with time following the mainshocks.
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1. Introduction

We can constrain the dynamic and mechanical factors that
control the behaviour of earthquakes and faults by statistically
characterising the spatial and temporal correlation between
seismic events and faults in the area. Of the many possible types
of correlation (e.g., intensity of seismic events, spatial and
temporal distributions), the kinematic correlation of faults and
focal mechanisms and its relationships with stochastic stress
fields have been investigated in Kagan and Knopoff (1985a, b) and
Kagan (1990, 1991, 1992a, b). The characteristics of kinematic
correlations expected in active faults under homogeneous stress
fields, however, have not been detailed, even though the presence
of homogeneous stress fields is frequently inferred in structural
geology and seismological analyses. This paper presents a GIS
customization based on ArcView 3 that calculates the kinematic
correlations of fault and focal mechanism populations, simulates
random fault orientations and determines expected slip vectors
under a homogeneous stress field. Equivalent and faster Fortran
90/95 versions of these tools are also provided; these are useful
when analysing large datasets.

*Code available from server at ¢ http://www.iamg.org/CGEditor/index.htm .
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2. Kinematic correlation of faults and focal mechanisms

The correlation in orientation between two geometrically
equivalent structures, i.e., two lines, planes or stress tensors, can
be measured through algebraic or geometric indices. In the first
case, a single scalar index is produced, while, in the second, a
rotation angle and its associated rotation pole measure the
disorientation between two structures. The statistical distribution
of correlation in a population can be derived following two
different methods. A reference orientation (e.g., the regional
orientation of the kinematic axes, the orientation of the fault
segment on which the main shock occurred) can be compared
with all observations in the sample; this is termed a central
statistic. In a second approach, no a priori reference value is
considered and the resulting statistics are pairwise, i.e., the
correlation is calculated for each possible pair of observations
that constitute the sample. In this case, the influence of spatial
separation and time lag on the correlation statistics can be
investigated.

The kinematic correlation in faults and focal mechanisms can
be investigated with the same analytical tools when we convert
the fault datum into a focal mechanism. With this operation, we
loose the information related to the rotational component of the
finite strain tensor of the fault, maintaining the component
related to the symmetric part of the strain tensor, that can be
expressed through the familiar concepts of P and T axes
(Cladouhos and Allmendinger, 1993).
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2.1. Scalar measures

One simple correlation index for line or plane structures is the
scalar product of unit vectors parallel to linear data or normal to
planar data. However, structures such as focal mechanisms, faults
with slickenlines, or stress tensors require more complex
procedures. For instance, Michael (1987) defined the closeness
(i.e., correlation) between stress tensors as the scalar (double dot)
product of two symmetric tensors scaled by the product of their
square-rooted magnitudes:
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This index varies from —1 for two opposite tensors to 1 for
equal tensors.
Kagan and Knopoff (1985a, b) and Kagan (1992a) calculated
the correlation between focal mechanisms (converted into
seismic moment tensors) with their coherence index:
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This is the scalar product of the normalised (symmetric)
seismic tensors, scaled by the opposite of the second invariant of
the normalised seismic tensor (eq. on p. 639 of Kagan and
Knopoff, 1985b):

L =LiLy+LL3+L1L3 3

where Lq, L, and L3 are the eigenvalues of the tensor. As these are
normalised seismic tensors, their eigenvalues are L;=1, L,=0 and
L3=—1, so I,=—1. The value of the Kagan and Knopoff coherence
index is simply twice Michael’s closeness index. Since Kagan and
co-workers extensively investigated focal mechanisms and fault
correlation, we use their approach to make it easier to compare
results. Equations for calculating the seismic tensor are listed in
Appendix A.

2.2. Rotational measures

A rotational index of the correlation between two structural
measures is the minimum angle required to rotate one measure to
the same orientation of the second one. This also provides the
orientation of the rotation pole, which could be useful for
structural analyses. For lines and planes, this measure is simply
obtained from the vector and scalar products of vectors, similar to
the operations for the scalar measure of correlation. Rotations of
focal mechanisms and fault planes with slickenlines are more
complex and can be derived through rotation matrices or
quaternion notations (Kagan, 1991; Kuipers, 2002). As they have
orthorhombic symmetry, four possible solutions are produced,
with the minimum angle solution between 0° and 120° (Kagan,
1991). In some cases, the four possible solutions may differ only
slightly in rotation angle but significantly in orientation. This
ambiguity can be dealt with by checking their consistency with
the rotation poles of associated vector-type structural data (e.g.,
single P, T and B axes, fault planes, slickenlines) or by simply
picking the solution with the minimum rotation angle.

2.2.1. Rotation matrices

A rotation operator in R®> may be represented by an orthogonal
matrix R (i.e., RR*=R'R=I, where [ is the identity matrix) whose
determinant is equal to 1 (Kuipers, 2002). The rotation matrix can
be calculated given a rotation pole and angle using the formulas in
Appendix B. If we consider a rotation expressed by a change of
orthonormal bases, i.e., from Bi(Xy,¥1,21) to Bx(X3, V2, Z2), the
rotation matrix is derived from the scalar products of the vectors

X, y, z representing the two bases (Kuipers, 2002, Eq. 7.8):

X1°Y2
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Z1°Y2
A vector v, can be rotated using the rotation matrix R with the

formula (Kuipers, 2002, p. 113):
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while to rotate a tensor T;, a “sandwich” operation is needed
(Kagan and Knopoff, 1985a, p. 433):

T, = R(T1RY) (6)

where Rt is the transpose of R.

2.2.2. Quaternions

An alternative way to determine the rotations of objects is via
quaternions. Quaternions are hyper-complex numbers of rank 4
invented by Hamilton in 1843 (Kuipers, 2002). A quaternion
U =qo*q1i+qoj+qskis the sum of a real number qo and of three real
numbers ¢, g2, g3 multiplied by the imaginary components i, j
and k, respectively, where i?=j?=k*=ijk=—1. The norm of a
quaternion is equal to:

\a@3+ai+ai+a3 )

so that a normalised quaternion has a unit norm. A pure
quaternion has the real component qo equal to zero. The
conjugate of a quaternion € [qo,q1,92, 3] is §* [qo,—q1,—q2,— 3]
For a normalised quaternion C, the inverse C~' (i.e.,
€7'0=0C " "=1) is simply C*.

The quaternion product t=]0C
Kuipers, 2002):

o Po —P1 —P2 —P3||qo

_in matrix notation is (Eq. 5.3 in
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The interpretation of normalised quaternions (of rank 4) as
rotational operators is the extension to R> of the property of a
normalised ordinary complex number (rank 2) to represent
rotations in R?. A normalised quaternion 0 =qo+qqi+qaj+qsk
represents a rotation operator whose rotation pole is (Kagan,
1991, Kuipers, 2002):

n=qii+qj+qsk (i.jandk
: unit vectors of an orthonormal basis) 9)

with a rotation angle &:

& =2acos(qp) (—180° <P <180, positive
following the righthand— rule) (10)

Rotation sequences are equivalent to quaternion multiplica-
tion: for example, two successive rotations with equivalent
normalised quaternions €; and €, can be composed into a single
rotation through quaternion multiplication:

B=q%q (1)
A vector vy=x;i+yj+z;k can be rotated via a “sandwich”
operation to a new orientation v, =x,i+y-j+z,K. To do this, vectors
are converted into pure quaternions, i.e., V{=0+x;i+yj+z:k and
Vo=0+Xx5i+y,j+25k; the following formula can then be used:

v, = q* (v:9) 12
Since a focal mechanism has three degrees of freedom, it can

be represented by a normalised quaternion; this quaternion is the
one equivalent to a rotation of the T, P and B axes from
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