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a b s t r a c t

LiDAR canopy height models (CHMs) can exhibit unnatural looking holes or pits, i.e., pixels with a much

lower digital number than their immediate neighbors. These artifacts may be caused by a combination

of factors, from data acquisition to post-processing, that not only result in a noisy appearance to the

CHM but may also limit semi-automated tree-crown delineation and lead to errors in biomass

estimates. We present a highly effective semi-automated pit filling algorithm that interactively detects

data pits based on a simple user-defined threshold, and then fills them with a value derived from their

neighborhood. We briefly describe this algorithm and its graphical user interface, and show its result in

a LiDAR CHM populated with data pits. This method can be rapidly applied to any CHM with minimal

user interaction. Visualization confirms that our method effectively and quickly removes data pits.

Crown Copyright & 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Light detection and ranging (LiDAR) is an active remote sensing
technology that emits pulses of near infra-red light and records
the backscatter, resulting in a three-dimensional (3D) point cloud.
Once collected, this raw point cloud is typically filtered and
classified into first and last returns. When captured over a forest
environment, the first returns correspond to the energy echoed
from the uppermost vegetation layer of a canopy. Once classified,
these points are interpolated to a digital surface model (DSM)
representing surface elevation above sea level. The last returns
correspond to the last detectable signal when a pulse is
intercepted by an opaque object, normally the ground (St-Onge
et al., 2003). These classified points are interpolated into a digital

terrain model (DTM), which represents bare terrain elevation
above sea level. When the DTM is subtracted from the DSM, the
result is a canopy height model (CHM), which represents absolute
canopy height above the terrain surface.1 As a result, LiDAR
technology allows for large-area acquisition of unprecedented 3D
structural forest information. However, such data are not without
their challenges.

Data pits are typically visible in raster CHMs as (apparently)
randomly distributed dark holes that are digitally represented by
exceptionally lower digital height values than their neighbors. It is

believed that these artifacts are caused by a combination of
factors, from data acquisition to post-processing, though no
specific cause has been defined in the literature.

It is important to distinguish between data pits and canopy
gaps. Gaps are natural openings in a forest canopy that range in
size (Spies and Franklin, 1989). However, canopy gaps are not
simply bare earth; rather they are often populated with shrubs
and saplings at different stages of growth. In fact, canopy gaps are
expected when studying forests and are integral to a healthy and
dynamic ecosystem (Whitmore, 1989). It is easy to visually
discriminate small canopy gaps from data pits. Canopy gaps are
asymmetrical, are generally composed of many pixels (even small
canopy gaps), and appear ‘natural’ in a forest landscape. Pits
exhibit none of these characteristics. In Fig. 1, the large dark mass
(image lower right) is a natural canopy gap, while the scattered
small dark rectangles (more than one pixel) and squares (single
pixels) represent data pits.

In addition to lending a poor visual appearance to an image
(Fig. 1), analyzing a pit-filled dataset may produce inaccurate
biophysical and ecological measurements (elaborated below). The
challenge is that not all pits are the same value, or differ the same
amount in value relative to their neighbors, thus using a simple
threshold to define pits does not work. If a group of contiguous
pixels corresponding to a tree crown contains a pit consisting of a
single pixel, that pixel value can still be higher than many non-pit
pixels in other areas of the CHM.

If one were to simply apply smoothing filters – common in
remote sensing image processing software – to a CHM with data
pits, pits could certainly be removed, or at least their ‘influence’ in
the image visually reduced. However, based on current methods,
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all pixels in the dataset would also be altered, not just pits. Not
only would this result in a visual smoothing of the image –
dependent on the size and type of smoothing filter selected – but
it is also an inefficient use of LiDAR technology, as smoothing
would also alter the vertical-accuracy (i.e., height) of the image. As
Hyyppä et al. (2000) reports, forest LiDAR data has an average
vertical standard error of approximately 22 cm (varying with the
technology used). Thus, when considering LiDAR’s numerous and
growing applications in forestry and landscape ecology (Dubayah
and Drake, 2000; Hyde et al., 2005; Lefsky et al., 2002; Lim et al.,
2003; Reutebuch et al., 2005; Hilker et al., 2008; St-Onge et al.,
2008), it is imperative to obtain accurate CHMs, especially for
individual tree-crown delineation (Leckie et al., 2003) and tree
height estimation (Popescu and Wynne, 2004). Additionally, the
presence of pits will result in average canopy height under-
estimation, which could lead to measurement errors of above-
ground forest biomass and carbon sequestration.

The purpose of this study is to report on a pit filling method for
LiDAR CHM’s and to evaluate its results by visually comparing
them to the effect common smoothing filters have on the same
datasets. As Wood and Fisher (1993) discuss, visual assessment of
CHMs is important. Indeed, it is an effective and often under-
estimated method in assessing data quality. In the following
sections, we provide a more thorough review of data pits within
the literature and discuss their potential causes; describe the
study site and data; provide details on the methods developed;
discuss the results; and provide a conclusion to our work.

2. Background

In this section, we briefly review pertinent literature related to
LiDAR pits and discuss their possible causes.

2.1. Insight from the literature

There is a distinct paucity in the literature regarding data pits
in LiDAR digital elevation models (DEMs). Leckie et al. (2003)

states that these artifacts arise from ‘‘ground hits within a tree
crown’’. Their pre-processing attempt to remove pits involved
overlaying a 25 cm grid on a 3D point cloud and building a DSM
from the highest hit in each cell. However, some pits remained,
causing ‘‘artifacts in the surface model’’. Hyyppä et al. (2000)
describe some pixels as ‘‘no data’’, and filled them ‘‘by using
interpolation and a knowledge of near-by pixels.’’ The interpola-
tion method is not given, neither is a definition of these
problematic pixels. Kraus and Pfeifer (1998), in their influential
paper on DTM production, encountered ‘‘big negative blunders’’,
and it is relatively clear that data pits are their equivalent. These
‘‘blunders’’ are not described in any detail, but they did ‘tweak’
their technique to be more robust in the presence of this problem.

Zhang and Chen (2003), in attempting to remove non-ground
LiDAR data points for DTM production, mention that some points
have ‘‘large negative elevation values drastically lower than those
of their neighbors’’. They also call this phenomenon ‘‘negative
blunders’’. To fix this problem, a morphological filter was
suggested, but not implemented or tested. They also mentioned
that the source of negative blunders is not definitively known.

MacMillan et al. (2003) attempted to fill pits in a LiDAR DTM
by applying mean filters of varying sizes. They considered this a
sub-optimal approach and called for the development of a more
flexible DEM editor. There has been other research conducted on
closing pits or minimizing errors in LiDAR DTMs (Briese et al.,
2002; Younan et al., 2002). However, these papers do not
elaborate on the relative number of pits in the study area or the
amount that pits drop in value relative to their neighbors, nor do
they explicitly define data pits or their causes. Additionally, there
is scarce mention in the literature specifically on pits occurring in
LiDAR DEMs, let alone the appropriate filling of these pits. In fact,
not a single paper was found devoted to the subject of data pits in
LiDAR DEMs. The issue of data pits in LiDAR CHMs is far from
resolved.

2.2. Causes of data pits

While not specifically defined, it is probable that the cause(s)
of data pits are intricately linked to LiDAR technology and the pre-
processing of raw point-clouds into meaningful raster DEMs.
Thus, the raison d’être of data pits is complex and not fully
resolved. The process from laser scanning to raster model
production is a multi-step procedure uniting three different
technologies: (i) laser ranging system, (ii) inertial navigation
system (INS) and (iii) differential global positioning system
(DGPS). Because of the possible compounding effect of multiple
factors, it is difficult to measure the effect individual factors may
have on pit formation.

Range error, platform attitude variation, position accuracy and
time misregistration can all contribute to errors in a LiDAR
dataset. Attitude errors arise from increasing the flying height and
scan angle (Baltsavias, 1999). Time misregistration between the
laser instrument, INS and DGPS account for inaccurate 3D
positioning (Baltsavias, 1999; Latypov, 2005). Position accuracy,
mainly concerning the quality of DGPS processing, accounts for
most of the intrinsic technological error associated with LiDAR use
(Baltsavias, 1999; St-Onge et al., 2003). However, it is not clear
whether system errors produce data pits.

Leckie et al. (2003) postulate that data pits may form by
combining different flight line datasets. LiDAR spatial resolution
may be affected or unevenly distributed by variation in aircraft
attitude, scan pattern, structure of the canopy and terrain and
deflection of lost returns. Some areas can yield zero to more than
ten pulse returns per square meter, resulting in a failure to record
many treetops (Gaveau and Hill, 2003, St-Onge et al, 2003).
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Fig. 1. Subset of Campbell River canopy height model (CHM). Comparing a canopy

gap approximately 10 m wide (lower right) to data pits (small dark rectangles and

squares).
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