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Available online xxxx The dynamics of stockmarket systems was analyzed from the stand point of viscoelasticity, i.e. conservative and
nonconservative (or elastic and viscous) forces. Asset values were modeled as a geometric Brownian motion by
generating random Wiener processes at different volatilities and drift conditions. Specifically, the relation be-
tween the return value and the Wiener noise was investigated. Using a scattering diagram, the asset values
were placed into a ‘potentiality–actuality’ framework, and using Euclidean distance, the market values were
transformed into vectorial forms. Depending on whether the forthcoming vector is aligned or deviated from
the direction of advancement of the former vector, it is possible to split the forthcoming vector into its conserva-
tive and nonconservative components. The conservative (or in-phase, or parallel) component represents the
work-like term whereas the nonconservative (or out-of-phase, or vertical) component represents heat-like
term providing a treatment of asset prices in thermodynamical terms. The resistances exhibited against these
components, so-called the modulus, were determined in either case. It was observed that branching occurred
in the values of modulus especially in the modulus of the conservative component when it was plotted with re-
spect to the Euclidean distance of Wiener noise, i.e. Wiener length. It was also observed that interesting patterns
formed when the change of modulus was plotted with respect to the value of Wiener noise. The magnitudes of
work-like and heat-like terms were calculated using the mathematical expressions. The peaks of both heat-like
and work-like terms reveal around the zero value of Wiener noise and at very low magnitudes of either term.
The increase of both the volatility and the drift acts in the same way, and they decrease the number of low
heat-like and work-like terms and increase the number of the ones with larger magnitudes. Most interestingly,
the increase either in volatility or in drift decreases the heat-like term but increases the work-like term in the
overall. Finally, the observation of the golden ratio in various patterns was interpreted in terms of physical resis-
tance to flow.
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1. Introduction

Financial markets are very complex systems involving too many pa-
rameters of natural, industrial, economic, political, social, and psycholog-
ical origin. Therefore it is very difficult to analyze the contribution of each
parameter and set up a universal equation to describe the behavior of fi-
nancial systems. There had been a variety of approaches to model such
systems, especially the stock markets, such as the Langevin and the
Fokker–Planck equations (Angel et al., 2006; Düring & Toscani, 2007;
Wosnitza & Leker, 2014; Mariani & Liu, 2007; Chiang, Yu, & Wu, 2009),
probability theory and entropy (Alfi, Coccetti, Marottad, Pietronero, &
Takayasu, 2006; Donangelo, Jensen, Simonsen, & Sneppen, 2006;
Wohlmuth & Andersen, 2006; Farmer, 2000; Ha, 2012; Schinckus,
2013; Wosnitza & Leker, 2014; Garzarelli, Cristelli, Pompa, Zaccaria, &
Pietronero, 2014; Yin & Shang, 2014; Takahashi, Tokuda, Nishimura, &
Kimura, 2014; Vogela & Saravia, 2014; Hua, Chen, Falcon, McCauley, &

Gunaratne, 2015; Oh, Kima, Ahna, & Kwak, 2015), chaotic behavior,
scaling relations, and fractal dimensions (Kim, Kwon, & Yook, 2013;
Petković, Lončarević, Jakšić, & Vrhovac, 2014; Sarvan, Stratimirovic,
Blesic, & Miljkovic, 2014; Zhong et al., 2014; Yalamova, 2012), quantum
mechanics, spin models, and other models (Jiang, Chen, & Zheng, 2013;
Horváth & Pincak, 2012; Krause & Bornholdt, 2013; Barad, 2014; Yuan
& Ping, 2014; Nastasiuk, 2014; Sornette, 2014; Queiros, Curado, &
Nobre, 2007; Dahui, Li, & Zengru, 2006; Yang, Chae, Jung, & Moon,
2006; Schulz, 2003; Takayasu, Mizuno, & Takayasu, 2006; Alfi, De
Martino, Pietronero, & Tedeschi, 2007; Canessa, 2009; Tuncay, 2006;
Manchanda, Kumar, & Siddiqi, 2007). An interesting thermodynamic
approach was to consider the asset price as the energy and its average
as temperature. The up-trends and the down-trends can be interpreted
as the heating and the cooling of the market, respectively. It is also
possible to define entropy within this framework (Sergeev, 2008;
Zarikas, Christopoulos, & Rendoumis, 2009).

A fundamental question in financial markets and essentially in all
time-series systems is whether there is a driving force behind returns.
Could this force be expressed within the context of physical concepts?
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There may be a vast number of parameters of a system, but how canwe
amalgamate them altogether into a unified form to express by a single
variable? These questions can be answered from the standpoint of the
growthmechanismof physical and nonphysical entities. Theworld pop-
ulation which is a physical entity and a saving account which is a non-
physical entity both grow exponentially in time if the prevailing
conditions do not change. The today's population P1 (or money M1) in-
creases to P2 (or money to M2) in a certain time interval, and in the Ar-
istotelian sense “today's actuality is tomorrow's potentiality”. Naturally,
tomorrow's value is not boundwith this potential, but is also affected by
a high degree of probabilistic influences. In physical processes such as
heat flow (i.e. Fourier's law),mass flow (i.e. Fick's law), and electric cur-
rent (Ohm's law) this potentiality principle leads to a mathematical ex-
pression between flux J and driving force X,

J ¼ LX or X ¼ 1=Lð Þ J ð1Þ

where L is a phenomenological coefficient. In the case of Ohm's law one
can set, J = current, X = voltage, and L = (1 / resistance) = conduc-
tance. In this general formalism force and flux are different things, but
in case of population growth or money in a saving account ‘the cause
replicates itself’. In chemical vocabulary, such systems are autocatalytic,
that is, they convert other things into their own structure, such as fe-
male rabbits feeding on grass convert grassmolecules into baby rabbits,
and female foxes feeding on rabbits convert rabbit molecules into baby
foxes. This phenomenon known as the Lotka–Volterra problem in ecol-
ogy is a fundamental process for all multi-parameter growing systems
where some of the parameters are in competition. This is actually the
physical basis of nonlinear or chaotic growth where some parameters
grow at the expense of some others; the simplest model equation
known as the logistic equation contains two terms, one is the growth
term (say ‘x’) and the other the control term (say ‘1− x’). In very com-
plex systems such as financial systems the same logic applies, because
they are also autocatalytic in nature, and the rising value of a share at-
tracts the attention of people and its value increases further. After a
while if the things do not go very well, for instance if there are
diminishing expectations, a decay in its asset value takes place, and
the price of other assets or financial sources increase as the people
will change their preferences, i.e. the autocatalytic power of other sys-
tems start to dominate the market.

For autocatalytic systems Eq. (1) can be simplywritten as Xi=GXi+1

where G is a proportionality constant between the values at i'th and
i + 1'th states, and in terms of asset prices (S) it is simply,

Sn ¼ GSnþ1 ð2Þ

where the G term includes all probabilistic effects of the future expecta-
tions and converts today's actuality (which is the tomorrow's potential-
ity) to tomorrow's actuality. It stands as a kind of resistance term and
the larger it is, the smaller the conversion of potentiality (i.e. Sn) into
actuality (i.e. Sn + 1).

All living and nonliving systems exhibit viscoelastic behavior, that is,
the forces which affect the systems can be classified as conservative and
nonconservative. The system shows reversible behavior under conser-
vative forces, and irreversible or dissipative (i.e. entropy producing)
behavior under nonconservative forces. The viscoelastic behavior of
financial markets was discussed in the past, and it was shown that the
components of G can be used as the modulus of elastic and viscous
components of forces (Gündüz, 2009; Gündüz & Gündüz, 2010). In
fact, G is a resistance (or modulus) to the acting force. Within this
context, such systems can be elucidated in terms of the concepts of ther-
modynamics, such asworkwhich is associatedwith the non-dissipative
component, and heat which is associated with the dissipative compo-
nent (Gündüz, 2012).

Infinance, the percent asset return is simply expressed as (Sn+1−Sn)/
Sn=(1/G)−1 which is an inverse function of G. In return or logarithmic

return terms G simply stands as nothing but an inverse proportionality
constant. Since the traditional financial mathematics is mainly based on
probability theory because of the inherent stochastic property of financial
systems, G does not have any physical meaning except being a ratio.

In this research work, the meaning ofWiener noise will be elucidat-
ed in terms ofG, and the dynamical behavior of financial systemswill be
investigated in terms of eachWiener shock that hits the asset value pro-
cess with respect to G and its components. The financial dynamics will
be elucidated in terms of physical concepts such as force, resistance
(or modulus), energy, work-like and heat-like terms.

2. Viscoelasticity of asset prices

Asset price change is generally considered to be a stochastic process
obeying the so-called geometric Brownian motion, in which the loga-
rithm of the randomly varying quantity follows a Wiener process or as
often called standard Brownian motion that has a drift term. This Wie-
ner noise corresponds to the randomly varying stochastic component
of the geometric Brownian motion. It is said that a stochastic process
of asset S(t) follows the geometric Brownianmotionwhen the following
stochastic differential equation is satisfied:

dS ¼ μ Sdt þ σSε
ffiffiffiffiffiffi
Δt

p
ð3Þ

where μ, which represents the drift as a percentage of S(t), and σwhich
represents the volatility as a percentage of S(t), are constants. TheWie-
ner process enters this equation as a differential random noise Wt, and
simply expressed by ΔW ¼ ε

ffiffiffiffiffiffi
Δt

p
. Since

ffiffiffiffiffiffi
Δt

p
is a constant in time-

series systems, the ε is usually notated to be the Wiener noiseW.
Using a drift in the model aims at modelling deterministic trends,

whereas the product of the percentage volatility and the Wiener noise
aims at modelling unpredictable events. In the case of no drift, Eq. (3)
simply becomes,

dS
S

¼ σε
ffiffiffiffiffiffi
Δt

p
: ð4Þ

When written in difference form it becomes,

Snþ1−Sn
Sn

¼ σWn or
Snþ1

Sn
¼ σWn þ 1: ð5Þ

Using Eq. (2) one gets,

1
Gn

¼ σWn þ 1: ð6Þ

So, there is a hyperbolic dependence between G andW. The depen-
dence of G to the inverse of W presents a kind of duality relation when
σ ≫ 1. That is, the way G behaves is depicted also by the way 1/W be-
haves, or vice versa. The duality relation well-known in string theories
was discussed in financial processes on an entirely different context
by Horvath (Horváth & Pincak, 2012). Note that the drift term ismissing
in Eq. (4) and thus in Eq. (6).

The term viscoelasticity refers to the deformation both in elastic and
viscous manner. Elastic deformation can be represented by a spring or
rubber band which can expand and contract with 100% recovery. A vis-
cous deformation can be represented by a cylinder–piston system
where the expanded cylinder never goes back. Most of the plastic mate-
rials exhibit both properties being partially elastic and partially viscous,
and they are said to exhibit viscoelastic property. In the scientific sense
the conservative systems display elastic behavior whereas the dissipa-
tive systems display the viscous behavior. If the deformation in a system
is 100% recovered it is elastic, and when partially recovered it is visco-
elastic. As a very simple case think of an asset price of which value in-
creases up smoothly first but then comes back smoothly to its very
original value in a day. It is purely elastic behavior. Another case is

2 G. Gündüz, Y. Gündüz / International Review of Financial Analysis xxx (2016) xxx–xxx

Please cite this article as: Gündüz, G., & Gündüz, Y., A thermodynamical view on asset pricing, International Review of Financial Analysis (2016),
http://dx.doi.org/10.1016/j.irfa.2016.01.013

http://dx.doi.org/10.1016/j.irfa.2016.01.013


Download English Version:

https://daneshyari.com/en/article/5084526

Download Persian Version:

https://daneshyari.com/article/5084526

Daneshyari.com

https://daneshyari.com/en/article/5084526
https://daneshyari.com/article/5084526
https://daneshyari.com

