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In this paper, we develop an efficient payoff function approximation approach to estimating lower and upper
bounds for pricing American arithmetic average options with a large number of underlying assets. The crucial
step in the approach is to find a geometric mean which is more tractable than and highly correlated with a
given arithmetic mean. Then the optimal exercise strategy for the resultant American geometric average option
is used to obtain a low-biased estimator for the corresponding American arithmetic average option. This method
is particularly efficient for asset prices modeled by jump-diffusion processes with deterministic volatilities be-
cause the geometric mean is always a one-dimensional Markov process regardless of the number of underlying
assets and thus is free from the curse of dimensionality. Another appealing feature of our method is that it
provides an extremely efficient way to obtain tight upper boundswith no nested simulation involved as opposed
to some existing duality approaches. Various numerical examples with up to 50 underlying stocks suggest that
our algorithm is able to produce computationally efficient results.
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1. Introduction

The importance of American-style options has been growing
increasingly and pricing of American options especially high-
dimensional cases remains one of the challenging problems both
theoretically and practically in the option pricing theory. In particular,
high-dimensional American options would be valuable research topics.
For example, Shiu, Chou, & Sheu (2013) document that basketwarrants,
essentially basket options with multiple underlying assets become
more popular over the past decade.2 In this paper, we focus on pricing
American arithmetic average options. The appealing advantage of an
American arithmetic average option lies in the fact that it exactly repli-
cates the evolution of the portfolio formed by the underlying assets. For
example, the cost of hedging a portfolio with an American arithmetic
average option is much lower than a portfolio of individual options on
the same underlying assets since the former takes the correlations
among the underlying assets into account and only one option is in-
volved in hedging. Besides, it would be simple for investors to replicate
the payoff of any portfoliowithout actually holding the portfolio if there
is such an American arithmetic average option available on the market.

Given these significant applications, efficient pricing methods for
American arithmetic average optionswritten on the average ofmultiple
underlying assets are of great value from various points of view such as
hedging and riskmanagement especially after the recent financial crisis
that re-emphasized the importance of riskmanagement. The purpose of
this paper is to develop an efficient approach to obtaining lower and
upper bounds for American arithmetic average option prices on a
large number of underlying assets.

The traditional valuation methods, such as lattice and tree-based
techniques, for pricing high dimensional American option pricing prob-
lems are typically plagued by the curse of dimensionality and thus,
simulation-based numericalmethods are inevitably required. Earlier lit-
erature about simulation-based approaches can be traced back to Boyle
(1977) in which European style claim is priced with Monte Carlo (MC)
simulation. American style option pricing techniques with MC
simulation include Bundling Methods in Tilley (1993), Stratified
State Aggregation (SSA) in Barraquand & Martineau (1995), Stochastic
Mesh Method (SMM) in Broadie & Glasserman (2004), regression-
based approach in Tsitsiklis & Van Roy (1999) and Longstaff & Schwartz
(2001), among others.

The existing simulation-based methods can be categorized into:
(1) Primal approach, which aims to obtain a lower bound for an
American option by estimating a suboptimal exercise strategy,
e.g., regression-based approaches as in Tsitsiklis & Van Roy (1999) and
Longstaff & Schwartz (2001); (2) Duality approach, which estimates an
upper bound for an American option by using a dual martingale, e.g.
Rogers (2002); Haugh & Kogan (2004) and Andersen & Broadie (2004).
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Among existing primal approaches, the most important simulation-
based method is the regression-based approach, where computational
costs are approximately linear in exercise opportunities and the number
of simulated paths. The theory has been well established in Carriere
(1996); Tsitsiklis & Van Roy (1999) and Longstaff & Schwartz (2001),
etc. Related convergence analysis and simulation issues can be found
in Tsitsiklis & Van Roy (2001); Clément, Lamberton, & Protter (2002);
Glasserman & Yu (2004a, 2004b) and Stentoft (2004).

In particular, the least squaresmethod (LSM) developed by Longstaff
& Schwartz (2001) is themost widely usedmethod due to its simplicity
and generality. A lower bound of an American option can be obtained
from a suboptimal optimal exercise strategy derived from linear regres-
sion procedure. However, this method and other primal approaches are
becoming computationally expensive with the increasing dimension of
pricing problem and hence the trade-off between computational costs
and efficiency of approximation would be a critical issue.

A variety of methods have been proposed to improve the perfor-
mance of regression-based approaches. For instance, to address arbi-
trary style of continuation values, Kohler, Krzyzak, & Todorovic (2010)
use least square neural network regression estimates and estimate
continuation values from artificial MC simulated paths. Their approach
is more general than LSM since the regression is nonparametric. But,
compared to LSM, the nonparametric in Kohler et al. (2010) would be
even worse to implement for pricing high-dimensional American
options.3 More recently, Jain & Oosterlee (2012) proposed a sto-
chastic grid method (SGM) which could be regarded as a hybrid
of Barraquand & Martineau (1995): stratified sampling along pay-
off method, Longstaff & Schwartz (2001): Least square Monte
Carlo method & Broadie & Glasserman (2004): stochastic mesh
method. The proposed SGM algorithm is more suitable for pricing
some high-dimensional American options than existingmethods. How-
ever, SGM would be computationally costly when sub-simulations are
embedded and more early exercise times are allowed.

To circumvent the curse of the dimensionality problem associated
with pricing of multi-dimensional American options, several dimension
reduction methods have been proposed. For example, Barraquand &
Martineau (1995) introduce a partitioning algorithm. Their method dif-
fers from Tilley's bundling algorithm in that they partition the payoff
space instead of the state space. Hence, only a one-dimensional space
is partitioned at each time step, regardless the dimension of the
problem. More recently, Jin, Li, Tan, & Wu (2013) further integrate this
idea into state-space partitioning algorithm (SSPM) developed by Jin,
Tan, & Sun (2007) and improve the computational efficiency signifi-
cantly with computational accuracy preserved. Those papers, however,
do not provide an algorithm for upper bounds.

In the present paper, we follow the dimension reduction approach to
pricing high-dimensional American arithmetic average options. The key
idea is to find a highly correlated geometric average for a given arith-
metic average. As will become clear later, the former is more tractable
than the latter in the sense that the geometric average has a lower
dimension4 than the corresponding arithmetic average, and thus the
optimal exercise strategy for the American geometric average option
is far easier to obtain than for the American arithmetic average option.
In particular, when the asset prices are modeled by jump-diffusion
processes with deterministic volatilities, the geometric mean is always
a one-dimensional Markov process regardless of the number of under-
lying assets, and thus is free from the curse of dimensionality. Then

the optimal exercise strategy for the American geometric average
option is used to obtain a lower bound for the corresponding
American arithmetic average option. In addition, by using an inequality
similar to (4) in Haugh & Kogan (2004), we provide an extremely fast
way to obtain the corresponding upper bound without nested MC sim-
ulations. To be more specific, in the inequality (4) in Haugh & Kogan
(2004), we approximate the payoff function of given American arith-
metic average option by the one of a highly correlated American geo-
metric average option. Unlike Haugh & Kogan (2004), we do not need
to find the optimal supermartingale and thus we do not need nested
MC simulations.

An important limitation of the lower bound is that it is not easy to
evaluate the accuracy of its approximation to the true option price.
Upper bounds in combination with the corresponding lower bounds
allow us to measure the accuracy of price estimators for American aver-
age options. In earlier literature, Broadie & Glasserman (1997, 2004)
propose stochastic mesh methods which generate not only lower but
also upper bounds and both bounds converge asymptotically to the
true value. Despite the advantage of obtaining the upper bound, the sto-
chastic mesh methods are quite computationally demanding. Boyle,
Kolkiewicz, & Tan (2003) further generalizes Broadie & Glasserman
(1997, 2004) with a low-discrepancy sequence for efficiency.

Independently developed by Rogers (2002); Andersen & Broadie
(2004) andHaugh&Kogan (2004), duality approach is themost general
technique among those upper bound related approach. The idea is to in-
troduce a dualmartingale in the pricing problem and rewrite the primal
problem into a dual minimization problem. For example, Andersen &
Broadie (2004) use nested MC simulation to approximate the optimal
exercise strategy. On the other hand, Haugh & Kogan (2004) apply an
intensive neural network algorithm and low discrepancy sequences to
estimate the option prices. However, their estimation techniques to
estimate dual martingale do not preserve the martingale property in
general and the computational cost is generally high.

To improve this, Glasserman & Yu (2004b) proposed a special re-
gression algorithm to preserve the martingale property. Nonetheless,
the martingale property Condition (C3) on the basis functions may
not be straightforward to verify in practice. In terms of efficiency,
Kolodko & Schoenmakers (2004) try to overcome the computational
inefficiency of nested simulation by choosing a different estimator to re-
duce the number of inner path simulations. However, the upper bound
is not guaranteed by their estimator as the number of inner path is too
few.

Instead of estimating a dualmartingale directly, Belomestny, Bender,
& Schoenmakers (2009) estimate the coefficient of the corresponding
martingale representation of the dual martingale. By martingale repre-
sentation theorem, the martingale property of the estimated dual
martingale is preserved. The resultant bound is then the true upper
bound. More recently, Zhu, Ye, & Zhou (2014) extend the method in
Belomestny et al. (2009) to a jump-diffusion model. Their theoretical
analysis shows that the martingale property of the estimated optimal
dual martingale is preserved and no nested simulation is used in their
algorithm. These methods, however, may become impractical for pric-
ing high-dimensional American options as a regression-based method
similar to LSM is employed to estimate dual martingales. By contrast,
our upper bound algorithm requires neither nested simulation nor
high-dimensional regression especially when the asset prices are
modeled by exponential jump-diffusion processes with deterministic
volatilities.

In summary, we have made two contributions to the literature of
pricing high-dimensional American arithmetic average options. First,
we have developed a computationally efficient dimension reduction
method to estimate lower bound. Second, we provide an easy-to-
implement approach to evaluate the upper bound which involves no
nested simulation and is based on a simple linear regression procedure.
We are not aware of any research in the current literature that estimates
lower and/or upper bounds for pricing high-dimensional American
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process. However, the dimension will increase if other state variables are involved such
as stochastic volatility. Consider a case where there are ten stocks and the price of each
stock follows Heston stochastic volatility model. Then, an arithmetic average depends on
twenty state variables, namely, ten stock price processes and ten volatility processes. By
contrast, the corresponding geometric average depends on eleven state variables, that is,
the geometric average process itself and the ten volatility processes.
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