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In this paper, we provide a framework tomodel and forecast daily volatility based on the newly proposed additive
bias corrected extreme value volatility estimator (the Add RS estimator). The theoretical framework of the addi-
tive bias corrected extreme value volatility estimator is based on the closed form solution for the joint probability
of the running maximum and the terminal value of the random walk. Using the opening, high, low and closing
prices of S&P 500, CAC 40, IBOVESPA and S&P CNX Nifty indices, we find that the logarithm of the Add RS estima-
tor is approximatelyGaussian and that a simple linear Gaussian longmemorymodel canbe applied to forecast the
logarithm of the Add RS estimator. The forecast evaluation analysis indicates that the conditional Add RS estima-
tor provides better forecasts of realized volatility than alternative range-based and return-based models.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Precise volatility estimation and forecasting play a critical role in fi-
nancial markets because of their importance for portfolio management,
derivatives pricing and riskmanagement. It iswell known in thefinance
literature that volatility is time varying, exhibits persistent characteris-
tics and is in general latent, that is, not directly observable. Interest in
this has led to the development of various models to describe the evolu-
tion of volatility over time. Themost popular of them include various ex-
tensions of the generalized autoregressive conditional heteroskedasticity
(GARCH) models and the stochastic volatility (SV) models. The popular-
ity of the GARCH class of models has its roots in capturing many stylized
facts such as volatility clustering, in its ability to account for dynamic
changes in conditional volatility over various horizons and also in provid-
ing good in-sample estimates. However, Pagan and Schwert (1990),
Figlewski (1997), Andersen and Bollerslev (1998) and Andersen,
Bollerslev, and Lange (1999) find that the GARCH model forecasts
based on squared return as the ex post volatility measure can be highly
unsatisfactory and controversial. In addition, the return-based volatility

estimators suffer from inefficiency when compared with extreme value
volatility estimators.

Another extension in the literature of forecasting volatility deals with
forecasting the realized volatility as a measure. Realized volatility can be
estimatedusing intradayhigh frequencydata and its forecasts canbe gen-
erated using a linear Gaussian model, such as the long memory ARFIMA
model (Andersen, Bollerslev, Diebold, & Labys, 2003; Pong, Shackleton,
Taylor, & Xu, 2004). However, intraday high frequency data are plagued
by non-negligible market microstructure issues which make the estima-
tion of volatility highly complex. Moreover, high frequency data are usu-
ally expensive and may not be available for tradable assets for various
emerging markets or may be available only for a shorter duration. In ad-
dition, working with high frequency data requires substantial computa-
tional resources. Furthermore, as argued by Rogers and Zhou (2008),
from the perspective of a practicing quant who is interested in pricing
an option or in hedging it, the amount of effort and resources required
to implement realized volatility estimators may appear excessive.

Volatility estimators based on the high and the low, also known as
extreme value volatility estimators have been acknowledged as being
highly efficient volatility estimators in thefinance literature. In addition,
the daily opening, high, low and closing prices of most of the tradable
assets are easily available. The different variants of the extreme value
volatility estimators can be categorized as: method of moments estima-
tors (see Garman & Klass, 1980; Kunitomo, 1992; Parkinson, 1980; and
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Rogers & Satchell, 1991) andmaximum likelihood (ML) estimators (see
Ball & Torous, 1984; Horst, Rodriguez, Gzyl, & Molina, 2012; and
Magdon-Ismail & Atiya, 2003). The ML estimators are efficient under
ideal conditions; however, from a practical viewpoint, they suffer
from a serious disadvantage. As highlighted by Maheswaran and
Kumar (2013), due to the complexity of the joint density, the ML es-
timator cannot be expressed in closed-form, and consequently it is
difficult to correct for the bias in the estimator arising from a poten-
tial misspecification of the data generating process. Furthermore,
since theML estimator does not have a time-separable form, something
that is usually available in method of moments estimators, it is difficult
to assess the sensitivity of the ML estimator to outlier observations. On
the other hand, among the method of moments estimators, the one
proposed by Rogers and Satchell (1991), hereafter referred as the RS
estimator, stands out because it is the only one that is unbiased regard-
less of the drift parameter whereas all others are biased in one way or
another if the mean return (drift) is non-zero. It needs to be noted
here that the RS estimator is unbiased under the assumption that the in-
traday price process follows a Brownian motion. All these extreme
value volatility estimators are unconditional and lack the ability of
capturing the dynamics of financial markets and are of less interest to
practitioners and quant specialists.

With the work of Alizadeh, Brandt, and Diebold (2002), the practical
usefulness of the simple extreme value volatility estimator, the log of
the trading range, was formally established. They propose the use of
range-based volatility measures in the estimation of stochastic volatility
models. They show theoretically, numerically, and empirically that
range-based volatility measures are highly efficient and approximately
Gaussian and also that they are robust to microstructure noise. Chou
(2005) proposes the Conditional Autoregressive Range Model (CARR)
to capture the dynamics of range-based volatility. In particular, he finds
that the CARRmodel can forecast return-based volatility more effectively
than can the GARCHmodel. Brandt and Jones (2006) propose yet another
model to capture the dynamics in range-based volatility by combining
Exponential Generalized Autoregressive Conditional Heteroskedasticity
(EGARCH) models with data on the range and find that the newmodels
effectively forecast return-based volatility. They find that the range-
based conditional volatility models can better forecast volatility over lon-
ger horizons up until 1 year in comparison to similar forecasts made by
GARCH models. Li and Hong (2011) propose the range-based
autoregressive volatility model and their findings are also in line with
that of Chou (2005) and Brandt and Jones (2006), in that range-based
conditional volatility models exhibit good performance in forecasting fu-
ture volatility. All these conditional extreme value volatility estimator
models are based on the range which can be noisy and biased.

Maheswaran and Kumar (2013) and Kumar and Maheswaran
(2014) find that the original RS estimator is severely downward biased
when implemented in the data because of the random walk effect.
Maheswaran and Kumar (2013) propose an automatic bias correction
(ABC) procedure which approximately corrects for the downward bias
in the RS estimator that is observed in the data. Inspired by the works
of Kou and Wang (2003, 2004), Kumar and Maheswaran (2014) pro-
pose an additive bias correction for the original RS estimator, called
herein the Add RS estimator, that exactly corrects for the downward
bias in the RS estimator. However, the Add RS estimator is an uncondi-
tional estimate of volatility.

In this paper, we address the issue of modeling and forecasting
volatility based on the Add RS estimator. First, we explore the statistical
properties of the logarithm of the Add RS (Log(Add RS)) estimator and
find that the distribution of Log(AddRS) is approximately Gaussian and,
hence, a linear Gaussianmodel can be applied tomodel the logarithm of
the Add RS estimator. The inspiration to model the conditional Add RS
estimator has its roots in the works of Andersen, Bollerslev, Diebold,
and Labys (2001); Andersen et al. (2003) . We apply ARFIMA(p,d,q)
by choosing appropriate orders, based on the Schwarz information
criterion (SIC), to model the conditional Log(Add RS) estimator. This

model hereafter is referred as the ARFIMA-Add RS model. To explore
the superiority of the ARFIMA-Add RS model, we evaluate the forecast-
ing performance of the ARFIMA-Add RS model based on the error sta-
tistics approach, the regression approach and the superior
predictive ability (SPA) approach and compare the corresponding
results with the alternativemodels that include the range-based con-
ditional autoregressive range (CARR) model and several return-based
models (Generalized autoregressive conditional heteroskedasticity
(GARCH) model, Fractionally integrated generalized autoregressive
conditional heteroskedasticity (FIGARCH) model, Exponential general-
ized autoregressive conditional heteroskedasticity (EGARCH) model,
Fractionally integrated exponential generalized autoregressive condi-
tional heteroskedasticity (FIEGARCH) model and the RiskMetrics
model). Our findings indicate that the ARFIMA-Add RS model performs
much better than the alternativemodels in forecasting realized volatility.

The remainder of this paper is organized as follows: Section 2 de-
scribes the data, methodology and the preliminary analysis. Section 3
reports our empirical findings and Section 4 concludes with a summary
of our main findings.

2. Data, methodology and preliminary analysis

2.1. Data

To explore the forecasting performance of the conditional Add RS
estimator, we use the daily opening, high, low and closing prices of
four global stock indices: Standard & Poor 500 (S&P 500), a free-float
capitalization-weighted index of prices of 500 large cap stocks actively
traded on United States stock exchanges; CAC 40, a capitalization-
weighted index of the prices of 40 highest market cap stocks listed on
the Paris Bourse (Euronext, Paris); IBOVESPA, an accumulation index
of about 50 stocks traded on the São Paulo Stock, Mercantile & Futures
Exchange covering 70% of the value of the stocks traded; and S&P CNX
Nifty, the broad-based benchmark of the Indian capital market. This
covers the major developed markets (S&P 500 and CAC 40) from the
United States and Europe and major emerging markets (IBOVESPA
and S&P CNX Nifty) from South America and Asia. The sample period
for all the indices is from January 1996 to June 2013. All the data have
been collected from the Bloomberg database. In the following tables,
we use Nifty to represent S&P CNX Nifty index.

2.2. Constructing the Add RS estimator

Suppose Ot, Ht, Lt and Ct are the opening, high, low and closing prices
of an asset on day t. Define:

bt ¼ log
Ht

Ot

� �

ct ¼ log
Lt
Ot

� �

xt ¼ log
Ct

Ot

� �

Let ut=2bt− xt and vt=2ct− xt . Hence, the bias corrected extreme
value estimators are given by:

Add ux ¼ 1
2

u2
t −x2t

� �
þ x2t :1 bt¼0 or xt¼btf g ð1Þ
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