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1. Introduction

Quadratic variation is aimed by the volatility estimators, because it
is the type of variation that is most close to the “true”-latent volatility.
References for quadratic variation go back to Wiener (1924) and Levy
(1937), as a development in semimartingales analysis. Rosenberg
(1972b), Officer (1973), as well as the latest Merton (1980), and
Schwert (1998) define and refine the elements of realized quadratic
volatility. Consistently estimating the quadratic variation and inte-
grated covariance, Back (1991) and Protter (2004) are the right refer-
ences for the economics and the mathematics of semimartingales
respectively. The stochastic integral of the adapted caglad process,
with respect to the cadlag semimartingale, in the unique quadratic
variation process of any semimartingale, is well defined by Protter
(2004). Also, Barndorff-Nielsen and Shephard (2001) and Andersen,
Bollerslev, Diebold, and Labys (2001a) are the ones that first connect
the quadratic variation with realized quadratic volatility from the
financial perspective. The notional (i.e. expected in a continuous time
frame) volatility concept, for diffusionswith andwithout jumps, has re-
cently been highlighted in a series of papers by Andersen et al. (2001a),
Andersen, Bollerslev, Diebold, and Labys (2001b) and Barndorff-Nielsen
and Shephard (2002a, 2002b, 2002c).

Realized volatility has a long history, and is themostly used nonpara-
metric volatility estimator, after the introduction of high-frequency data

in academics. It appears in Rosenberg (1972b), Merton (1980) and
French, Schwert, and Stambaugh (1987), with Merton (1980) making
the implicit connection of realized volatility with the pure scaled
Brownian motion plus drift case. Poterba and Summers (1986), French
et al. (1987) and Schwert (1989) were the first relying onmonthly sam-
ple variances computed from daily returns and Hsieh (1989), Schwert
(1990a, 1990b), Hsieh (1991) and Taylor and Xu (1997) exploit intraday
data to compute daily sample return variance measures, with high-
frequency (intraday) data. In order to estimate volatility, what we have
to estimate is integrated volatility. Under the natural estimate of inte-
grated volatility (the sum of squared returns), assuming a standard
Brownian motion as price process, realized volatility estimate comes
more close to the true IV, as the sampling frequency increases. Though,
as sampling frequency increases, themicrostructure noise also increases.

Realized variation converges uniformly in probability to the qua-
dratic variation process as the sampling interval shrinks —as shown
in Andersen and Bollerslev (1998) and Barndorff-Nielsen and
Shephard (2002b, 2002c). When the price path displays discontinu-
ities, due to jumps, in the general semimartingale setting, the qua-
dratic variation is no longer identical to the integrated volatility,
because it should also include the cumulative squared jumps. The
main explanation for this phenomenon is a vast array of issues collec-
tively known as market microstructure noise, including – but not lim-
ited to – the existence of the bid-ask spread. Market microstructure
noise induces autocorrelation in the intraday returns, imposing bias
in the realized volatility, because of its assumption of no autocorrela-
tion among intraday returns.

In this paper we empirically investigate the presence, properties
and effects of jumps on the volatility of two most important European
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indices and four most important U.S. American indices. Using intra-
day data we first construct several realized volatility estimators and
then use these estimators as inputs in further analysis: in testing for
jumps, in examining the properties of the resulting jump series and
in modeling the jump component of volatility. We employ the meth-
odology of Andersen, Bollerslev, and Diebold (2007), ABD hereafter,
in testing for and modeling jumps. Their work, in turn, builds on ear-
lier results of Barndorff-Nielsen and Shephard (2004, 2006, 2007). Of
particular interest here are certain statistics of the jump component
of volatility, such as the temporal dependence and duration of
jumps. Then, we employ the class of heterogeneous autoregressive
(HAR) models for assessing the relevant effects of jumps on volatility.
In this type of models we can also disentangle the differential effect
that the jump and continuous components have on volatility. The
HAR class of models was introduced by Corsi (2009 — the working
paper was available from 2004) and see also Corsi, Pirino, and Reno
(2008) and Andersen et al. (2007). The analysis is performed for six
important international equity market indices, the CAC40, DAX,
COMPX, NDX, SPX and DJI indices, that differ on capitalization and
other characteristics, in an attempt to see what type of effects do vol-
atility jumps have on different markets. This is the first time, to the
best of our knowledge, that this type of empirical analysis is
performed for the realized volatility estimators studied.

The first trial to correct realized volatility for the market microstruc-
ture noise (i.e. jumps) was from Ebens (1999) and Bollen and Inder
(2002), who have used either the moving average or the autoregressive
model towhiten the intraday returns, before computing the realized vol-
atility. The realized volatility estimators – studied in the present paper –
comprehend various corrections formicrostructure noise. Hansen, Large,
and Lunde (2005) denote a univariate and a multivariate version of a
moving average based realized volatility estimator. This estimator uses
a first-order moving average regression — symbolized as RVt

(ma. adj1).
Another moving average based realized volatility estimator is also
used; in specific, this estimator uses the residuals of a second-ordermov-
ing average regression and is symbolized as RVt

(ma. adj2). They also pro-
pose an adjustment for all the cases, in order to capture the long-run
variance of the “whiten” returns. After finding this residual series, they
sum the squared residual series and multiply this sum with a numerical
function of the MA coefficient. Bandi, Russell, and Yang (2008) propose
different types of realized kernels. They define the Bartlett kernel estima-
tor (RVt(bar)) in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006,
2008) with a number of the optimal number of return autocovariances
defined by Bandi and Russell (2005). They also define the two scale real-
ized volatility estimator of Zhang, Mykland, and Ait-Sahalia (2005) with
an optimal sampling frequency (RV

moptð Þ
t ), estimating this frequency as

the signal-to-noise ratio, like in Bandi and Russell (2005). They also de-
fine the two-scale realized volatility estimator of Zhang et al. (2005)
with the optimal number of subsamples (RVt(TS,fs)), coming from Zhang
et al. (2005). Bandi et al. (2008) also define the two-scale realized vola-
tility estimator of Zhang et al. (2005)with the number of subsamples es-
timated by the Bartlett-type kernel weights (RVt(TS)), like the optimal
number of return autocovariances in Bandi and Russell (2005). Bandi
et al. (2008) also define an adjustment of the above two-scale estimator
as its downward bias corrected version (RVt(TS,BC)). The number of sub-
samples is defined like in estimator RVt(TS).

The rest of the paper is organized as follows. In Section 2 we have
an overview of our empirical methodology; in Section 3 we present
the data used in the paper; in Section 4 we discuss our results and
in Section 5 we offer some concluding remarks.

2. Empirical methodology

2.1. Volatility estimators

There is an active literature on themany available realized volatility
estimators, from the original “naive” estimator to advanced estimators

that correct for the presence of market microstructure effects, like
microstructure noise which can be correlated with the underlying
high-frequency prices. We cannot possibly review this line of the liter-
ature here so we next present the estimators that we use in this paper
along with their main references from the literature.

To begin with assume that for each day, with time confined in the
unit interval [0,1], the observed intraday logarithmic asset prices fol-
low the noise contaminated process:

pti ;m ¼ p�ti ;m þ uti
ð1Þ

where p denotes the observed logarithmic price, p∗ denotes the
unobservable equilibrium logarithmic price and u denotes the
unobservable market microstructure noise.2 The time index ti repre-
sents the ith observation in the m + 1 intraday observations with a
sampling frequency equal to 1/m. Denote by ri;m ¼ pti ;m−pti−1;m and
r�i;m ¼ p�ti ;m−p�ti−1;m the corresponding intraday returns (at the highest
frequency of observation) and by ei;m ¼ uti

−uti−1 the difference of the
noise component and assume that the equilibrium price evolves as a
function of a stochastic volatility process as:

p�ti def ∫
ti

0

σ sdWs þ jti ð2Þ

where σt is a stochastic volatility process and Wt is standard Brownian
motion and where jti denotes the component that will appear in the
price process in the case there are discrete jumps. The integrated vola-
tility over the whole day is then given by:

Vt def ∫
1

0

σ2
s dsþ λt ð3Þ

where λt = ∑0 b s ≤ 1 κs2 is the contribution of the jumps into the vol-
atility, with κs denoting the size of the discrete jumps.

To present our realized volatility estimators consider first the case
where jti ¼ qt ¼ 0 so that there are no jumps present. Then, a consis-
tent estimator for volatility, asm → ∞, is given by the sum of intraday
squared equilibrium returns as:

RV mð Þ
t� def

Xm
i¼1

r�2i;m→Vt : ð4Þ

However, ri,m∗2 is latent and thus the above estimator cannot be
implemented. The obvious alternative is to use the sum of intraday
squared observable returns but this alternative is not robust to the
presence of microstructure noise (leading to various inconsistencies).
One has therefore to consider various other estimators. We begin
with the naive benchmark, the realized 5-minute estimator.

Hsieh (1989, 1991) and Schwert (1990a, 1990b) were the first to
consider the use of high-frequency data for computing an early ver-
sion of realized volatility estimators. However, the currently accepted
prototype of a realized volatility estimator comes from the work of
Andersen et al. (2001a), ABDL hereafter, and is simply the sum of
the observable intraday squared returns:

RV mð Þ
t def

Xm
i¼1

r2i;m: ð5Þ

In the absence of noise, this estimator is a consistent estimator of
Vt as the sampling frequency increases. However, given the existence

2 The microstructure noise variable is treated under various probabilistic assump-
tions in the literature, the easiest of which is that it is an i.i.d. sequence.
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