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Surprisingly, a positive risk–return relationship has not been consistently observed for the traditional GARCH
in the mean model in other studies. In this paper, we employ a combination of the jump diffusion and GARCH
model in the mean equation to test the risk–return relationship for U.S. stock returns. The results suggest a
statistically significant relationship between risk and return if the risk measure includes components of
smoothly changing variance and jump events.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of the risk–return relationship for equities is a central
concern of asset pricing. An important part of the risk–return litera-
ture attempts to establish a positive relationship at the market level
between the time-varying expected risk premium and its conditional
variance over time. Documenting this relationship is a necessary con-
dition for establishing a risk-return relationship at the individual
stock level, both cross-sectionally and over time. The GARCH in the
mean model (denoted by GARCH-M), introduced by Engle, Lilien,
and Robins (1987), allows researchers to jointly estimate both the
mean and the variance processes and thereby establish the risk–
return connection at the market level.

Researchers who have employed GARCH-M have reported mixed re-
sults. For example, employing instrumental variables, Campbell (1987)
found a significant negative relationship. In contrast, French, Schwert,
and Strambaugh (1987) found a positive relationship between return
and conditional variance. Baillie and DeGennaro (1990), Campbell and
Hentschel (1992), and Chou (1992), among others, found a positive but
insignificant relationship between risk and return. Glosten, Jagannathan,
andRunkle (1993) found an inverse relationship between the conditional
variance and the expected return. Lanne and Luoto (2008) concluded
that, contrary to previous findings, GARCH-M models produced a strong
robust relationship between risk and return. However, their results de-
pend on the prior belief about the magnitude of the intercept term. The

failure to confirm a risk–return relationship that is positive for the
whole market casts suspicion on the research for establishing this rela-
tionship for individual stocks.

Scruggs (1998) presents an excellent summary of the conflicting
results. Attempting to resolve the enigma by introducing a second fac-
tor, long-term government bond returns, he concludes that there is a
significant and positive relationship between risk and return. In the
same spirit, Wagner and Marsh (2005) introduce what they refer to
as “surprise volume” into the GARCH-M model. They also find a posi-
tive relationship between return and risk.

One possible reason for the failure to find a positive relationship
between risk and return is that the GARCH-M model is only meant to
capture smooth changes in the returns and smooth and persistent
changes in the variance. As Cont (2001) noted, returns on many finan-
cial assets (including stocks) exhibit volatility clustering. That is, volatil-
ity has a positive autocorrelation that tends to be high in some periods
and low in other periods. Although the GARCH-M model is well suited
to explain this phenomenon, it is notwell suited to explain large sudden
jumps in returns. This is because stock returns are characterized by
occasional large, discrete jumps in returns usually due to large shocks
commonly attributed to unexpected news announcements. As Boudt,
Danielsson, and Laurent (in press) note, applying GARCH models
under these circumstances leads to poor estimates of volatility. We be-
lieve this may account for the mixed results reported for the GARCH-M
model. Thus, incorporating jumps into the GARCH-Mmodel presents an-
other way to measure the risk–return relationship and to shed light on
the anomaly. Since jumps cannot be observed directly, it is difficult to
estimate them. To make estimation straightforward, Chan and Maheu
(2002) proposed a filter to infer ex post the distribution of jumps at
time t. Using this filter, they then constructed the shock to the expected
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number of jumps. This shock at time t provides a basis for producing the
conditional jump intensity.

Adapting the procedure suggested by Chan and Maheu (2002), in
this paper we derive an autoregressive jump intensity (ARJI) model
and integrate it into the GARCH-M model. The GARCH model ac-
counts for the smooth and persistent changes in volatility over time,
whereas the ARJI model deals with the spikes in returns. The ARJI
model not only handles the spikes but also takes into account the
clustering of spikes. Moreover, the ARJI model allows for the jump
size to vary over time. We believe that combining these models will
maintain the GARCH model's ability to account for volatility clustering
and the ARJI model's ability to account for sharp jumps in returns. Fur-
thermore, only when the jumps are accounted for can the GARCH-M
model detect the risk–return relationship. We refer to this model as
an ARJI-GARCH in the mean model (ARJI-GARCH-M model).

This paper verifies the equity risk–return relationship using a mea-
sure of risk that includes not only the conditional variance but also
jumps. The advantage of the ARJI GARCH-M model compared to the
GARCH-M model is that both returns and the conditional variance
now include the impact of jumps. Using thismodelwe document a pos-
itive relationship between return and risk. Furthermore, we find a pos-
itive relationship between return and the risk attributable to jump risk.

Christoffersen, Jacobs, and Ornthanalai (2012) using daily data
also adopt this approach to measure the risk premium of dynamic vol-
atility and dynamic jump intensity in both stock index returns and
stock index options. Their best performing models for equity returns
find that only jump risk is priced. They findno risk premium for the nor-
mal dynamic volatility. These results are plausible for short-term inves-
tors, such as option traders. We believe it is important to examine
whether these results apply to longer-term investors.

In the next section, we outline the model. In Section 3 the data are
presented, followed by the reporting of our results in Section 4. In the
final section, Section 5, we summarize our findings.

2. ARJI-GARCH-M model

Ball and Torous (1983) provided statistical evidence of the existence
of log normally distributed jumps for most NYSE-listed common stocks,
suggesting that jumps in stock prices do not have a continuous sample
path. Under these conditions, returns are no longer completely described
by their mean and variance. The variance as traditionally measured re-
quires the assumption of normally distributed stock returns. The intro-
duction of jumps allows us to account for the non-normality
observed in stock returns (see Maheu & McCurdy, 2004; Rachev, Menn,
& Fabozzi, 2005). Thus, the riskmeasure now includes both the tradition-
al variance as well as the jumps.

Furthermore, stock returns not only tend to show jumps but
the jumps tend to cluster. For example, the recent financial crises
contained episodes of extreme volatility followed by a series of jumps
over a relatively short period. As a result, it is important to model both
time variation and clustering in the jump process, and for this reason,
we adopt the mixed GARCH-jump model of Chan and Maheu (2002).
Their model in addition to being well suited for this purpose offers two
additional advantages. First, it captures normal news innovations in the
conditional variance of returns (GARCH)while unusual news innovations
are captured in the time-varying jumps and in the jump intensities (clus-
tering of jumps). Second, the estimation of time-varying jumps and jump
intensities requires the identification of news events. The identification of
the news events to include in the time-varying jump and the jump-
intensity model could be criticized as merely ad hoc.

Chan and Maheu (2002) skirt this problem by introducing a new
discretemodel inwhich both the time-varying jumps and jump cluster-
ing evolve endogenously according to a parsimonious autoregressive
moving average (ARMA) structure. Their model postulates that returns
are governed by the simple diffusion model and one additional source
of volatility, a Poisson jump model of stock returns. In this model,

stock returns experience a discrete number of shocks in each period.
The number of shocks or jumps (which could be zero) is determined
by a Poisson process. The size of each jump is assumed to be indepen-
dent and normally distributed with a mean of θ, and a standard devia-
tion of δ. The model for excess stock return Rt, is then:

Rt ¼ μ þ∑n
t¼1ϕtRt−n þ

ffiffiffiffiffiffiffiffiffi
htzt

q
þ∑nt

k¼1yt;k zt eNI 0;1ð Þ yt;k eN θ; δ2
� �

:

ð1Þ

The jump term, yt,k, represents the size of a discrete jump k at time
t. The model proposes that nt, the number of jumps that arrive be-
tween t−1 and t, follows a Poisson distribution with the Poisson pa-
rameter λ>0 and the density given by

Pðnt ¼ j Фt−1j Þ ¼ exp −λtð Þλj
t

j!
: ð2Þ

The mean and variance for the Poisson random variable are both
λt, which is called the jump intensity. Chan and Maheu (2002) pro-
pose the following approximate ARMA model of the conditional
jump intensity

λt ¼ λ0 þ ρλt−1 þ γξt−1 ð3Þ

where ξt−1 represents the previous period shock in predicting λt−1.
Thus, λt depends on its previous value and the jump intensity resid-
ual of the previous period. To insure λt is positive, we require λ0>0
and ρ>γ>0. Thus, if the previous period λt−1 was higher than
expected (ξt−1>0), then the model predicts that the expected
number of jumps will increase. Further, if the appropriate stability
conditions are met, then the unconditional value of λt is E(λt)=
λ0/(1−ρ).

The parameters of the jump size, ytk, define the jump size distribu-
tion. The mean of the distribution is allowed to reflect the asymmetric
effects of good and bad news as determined by the sign of the param-
eter of the risk premium. Each jump has a different size, determined
by the normal distribution with mean θ and standard deviation δ. In
the jump diffusion model, these size parameters also vary over time.
Chan and Maheu (2002) postulate that they depend on past excess
returns in the following manner:

θt ¼ η0 þ η1Rt−1 D Rt−1

� �þ η2Rt−1 1−D Rt−1

� �� � ð4Þ

where D(Rt−1)=1 when Rt−1>0 and 0 otherwise. This allows the
jump size to respond asymmetrically to positive and negative excess
returns resulting from good or bad news. If excess returns are positive
(negative), then the jump size, θt=η0+η1Rt−1 (θt=η0+η2 Rt−1),
and the value of η1 (and η2) indicate the impact of positive (negative)
excess returns. The variance of the jump size depends upon the
GARCH variance in the following way:

δ2t ¼ ζ2
0 þ ζ1 ht ð5Þ

To test the temporal relationship between risk and return, we ex-
tended the GARCH-M model to include the ARJI components in the
mean equation. The variance term is no longer the smoothed condition-
al variance but the conditional variance which contains the following
jump model terms:

Var Rt Фt−1

�� � ¼ ht þ δt
2 þ θt

2
� �

λt :
�

ð6Þ
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