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Abstract

A computationally efficient numerical strategy for fitting approximate minimum GCV bivariate thin plate smoothing
splines to large noisy data sets was developed. The procedure discretises the bivariate thin plate smoothing spline equations
using biquadratic B-splines and uses a nested grid SOR iterative strategy to solve the discretised system. For efficient
optimisation, the process incorporates a double iteration that simultaneously updates both the discretised solution and the
estimate of the minimum GCV smoothing parameter. The GCV was estimated using a minimum variance stochastic
estimator of the trace of the influence matrix associated with the fitted spline surface. A Taylor series expansion was used to
estimate the smoothing parameter that minimises the GCV estimate. The computational cost of the procedure is optimal in
the sense that it is proportional to the number of grid points supporting the fitted biquadratic spline. Convergence was
improved by adding a first order correction to the solution estimate after each smoothing parameter update. The algorithm
was tested on several simulated data sets with varying spatial complexity and noise level. An accurate approximation to the
analytic minimum GCV thin plate smoothing spline was obtained in all cases.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin plate smoothing splines are commonly used
to fit smooth surfaces to noisy data. In environ-
mental modelling applications, they have been used
to construct surfaces representing surface climate
processes (Hutchinson, 1995; Zheng and Basher,
1995), topography (Hutchinson, 1989a), remotely
sensed data (Berman, 1994), pollutant dispersion
(Ionescu et al., 2000) and plankton distributions
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(Wood and Horwood, 1995). They are also popular
in other fields such as image analysis (Bhaskaran
and Konstantinides, 1996), medical research (Lapeer
and Prager, 2000) and data mining (Hegland et al.,
1998a.b). For practical spatial interpolation pro-
blems, surface smoothness is a central issue given
that the data observations contain a significant noise
component. The data model underlying splines is
therefore a statistical decomposition of the observed
data into a spatially coherent signal and spatially
discontinuous noise. The smoothing spline model is
given by
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where z; are a set of n observations, g is a suitably
continuous function of d predictor variables, and ¢;
are realisations of a random variable ¢. The errors ¢;
are generally assumed to be independent with mean
zero and variance ¢>. They are assumed to be due to
measurement error, and short range microscale
variation that occurs over a range below the
resolution of the data set (Hutchinson, 1993).

Thin plate smoothing spline functions are de-
signed to approximate the spatially coherent signal,
g, by effectively smoothing the data. A thin plate
smoothing spline is defined to be the minimiser of
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over functions f € %, where % is a space of
functions whose partial derivatives of total order
m are in Z*RY), A is a positive smoothing
parameter, and Jffﬂ" ) is a measure of the roughness
of the function f in terms of mth order partial
derivatives. Calculation of J,‘;(f ) depends on m, the
order of the partial derivatives, and the number of
independent variables d. For m =2 and d = 2, the
case considered here

J3() = / (Frw 2 0, +/2) dxy dxo 3)

(Wahba, 1990).

Minimising expression (2) represents a trade-off
between fitting the data as closely as possible whilst
maintaining surface smoothness. The smoothing
parameter A controls the separation of signal and
noise. If 2 = 0 the function fexactly interpolates the
data, implying zero noise, whereas if 1 is very large
the function approaches a plane.

Minimising the generalised cross-validation
(GCV) has been shown by Craven and Wahba
(1979) to be an accurate method of estimating the A
corresponding to the spline function f that best
represents the underlying process g. The GCV is a
measure of predictive error, that is defined by
removing each data point in turn and summing,
with appropriate weighting, the square of the
discrepancy of each omitted data point from a
surface fitted to all other data points. The GCV is
actually calculated implicitly by the formula
GCV =n % 4)
where R is the residual sum of squares
S i—f (x1))%, and T = tr(I — A(2)), where A(})
is the influence matrix associated with the fitted

spline (Craven and Wahba, 1979; Wahba, 1990).
The quantity tr(A4(4)), termed the signal by Wahba
(1990), is the effective number of parameters of the
fitted thin plate spline. Case studies by Hutchinson
(1993); Hutchinson and Gessler (1994) have shown
the signal to be a useful statistic in its own right. A
signal exceeding n/2 can indicate insufficient data or
short range correlation in the data (Hutchinson,
1998). Optimising 4 by minimising the GCV gives
an estimate of the unknown error variance o2,
stated in Wahba (1990) as

6= )

Minimum GCV thin plate smoothing splines have
been widely used in spatial interpolation applica-
tions e.g. (Hutchinson and Bischof, 1983; Hutch-
inson, 1998, 1995; Zheng and Basher, 1995; Price
et al., 2000; Jeffrey et al., 2001). However, analytic
procedures for calculating thin plate smoothing
splines are O(n®), making them computationally
impractical for large data sets. A number of
strategies for improving the computational effi-
ciency of analytic thin plate smoothing spline
calculation exist (Beatson and Newman, 1992;
Beatson and Powell, 1994; Beatson et al., 1996).
Finite element techniques have also been developed
(Hutchinson, 1989a; Hegland et al., 1998a; Ramsay,
2002). These methods tend to focus on the numeric-
analytic properties of thin plate smoothing splines
rather than their statistical properties, and do not
incorporate an automatic mechanism for optimising
smoothness. The method presented in this study is
designed to efficiently compute accurate finite
element approximations to minimum GCV bivari-
ate thin plate smoothing splines. Another option for
obtaining a computationally efficient approxima-
tion to minimum GCYV thin plate splines is to use
the method developed by Bates and Wahba (1982),
which approximates thin plate splines for large data
sets using knots.

Hutchinson (1989a, 2000) developed a simple
multigrid based strategy based on SOR iteration
that calculates finite element approximations to
bivariate thin plate smoothing splines for elevation
data in O(N) operations, where N is the number of
grid points. This method uses a simple Newton
iteration to optimise the smoothing parameter to
yield a specified residual sum of squares. This
criterion is appropriate in the context of interpolat-
ing topography, where an estimate of the amount
of noise is available (Hutchinson, 1989a). The
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