
A new object model of batch equipment and procedural control for
better recipe reuse

Giovanni Godena a,d,*, Tomaž Lukman a,1, Igor Steiner b,2, Franc Bergant c,3,
Stanko Strmčnik a,4

a Jožef Stefan Institute, Department of Systems and Control, Jamova 39, SI-1000 Ljubljana, Slovenia
b Inea d.o.o. Stegne 11, SI-1000 Ljubljana, Slovenia
c Helios, Tovarna barv, lakov in umetnih smol Količevo, d.o.o. Količevo 65, SI-1230 Domžale, Slovenia
d Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia

1. Introduction

There is broad consensus among the manufacturers of
automation equipment, service providers, and end users of the
need to comply with the ISA-88 standard [1] in batch-process
control, regardless of the level of automation. The reason lies in the
many attractive features of this standard, e.g., it represents a
common language for engineering and operations management; it
is a standard that reduces the engineering cost for automation; it
can be used to identify the appropriate level of automation, etc.
[2]. Furthermore, it is compatible with the ISA S95 standard, and as
such represents an important framework for design and implemen-
tation of control, optimization, and decision functions on various
hierarchical levels of the enterprise (see e.g., [3,4]). However, there

are also certain problems concerning the application of the ISA-88
standard and the batch tools that are based on it, see e.g., [5].

One of the problems encountered in real life applications of
batch control is the high degree of repetition of information in the
recipes and their low degree of reuse, resulting in the need for
increased effort regarding recipe management and in a higher
probability of errors in the recipes. This problem stems, in our
opinion, from the deficiencies of the standard batch-process
control object model, caused by its fixed structure of unit classes
and (too) simple class hierarchy.

Surprisingly, the above-mentioned problem is not recognized
in the technical and scientific literature. An extensive literature
search in several databases, including INSPEC, Science Direct, and
Google Scholar, did not turn up any paper dealing with this
problem. The search was performed using various combinations
of the following keywords: ‘‘batch’’, ‘‘process’’, ‘‘control’’, ‘‘recipe’’,
‘‘reuse’’, ‘‘repetition of information’’, and ‘‘reusability’’.

In our opinion, a proper solution to the problem is the
introduction of a more sophisticated object model of equipment
and procedural control. A step toward a more sophisticated object
model has already been made in Part 2 of the ISA-88 standard, [6]
which introduces a more complex kind of class hierarchy in the
form of multiple inheritance in the units object model by allowing
an equipment entity to belong to more equipment classes.

Computers in Industry 70 (2015) 46–55

A R T I C L E I N F O

Article history:

Received 9 May 2014

Received in revised form 6 February 2015

Accepted 11 February 2015

Available online 11 March 2015

Keywords:

Batch control

Recipes reuse

Information repetition

Equipment object model

Overlapping unit classes

A B S T R A C T

Application of the ISA-88 standard in industrial batch-process control often leads to repetition of

information in recipes and to a low level of their reuse. This problem stems from the deficiencies of the

standard batch-process control object model. A solution to the problem is proposed that is based on a

more sophisticated object model of equipment and procedural control, with dynamically defined and

potentially overlapping unit classes. The new concept, together with its elements, is described, and its

use is illustrated and validated by means of a real batch control project. The validation is carried out as a

comparison of the number of master recipes and unit procedures created under the new object model

with the number of master recipes and unit procedures needed to perform the same functionality using

the standard object model. The comparison demonstrates that the proposed approach has a significant

advantage.

� 2015 Elsevier B.V. All rights reserved.

* Corresponding author: Tel.: +386 1 477 37 59; fax: +386 1 477 39 94.

E-mail addresses: giovanni.godena@ijs.si (G. Godena), tomaz.lukman@ijs.si

(T. Lukman), igor.steiner@inea.si (I. Steiner), franc.bergant@helios.si (F. Bergant),

stanko.strmcnik@ijs.si (S. Strmčnik).
1 Tel.: +386 1 477 37 30; fax: +386 1 477 39 94.
2 Tel.: +386 1 513 81 17; fax +386 1 513 81 70.
3 Tel.: +386 1 3629 350; fax: +386 1 3625 991.
4 Tel.: +386 1 477 35 76; fax: +386 1 477 39 94.

Contents lists available at ScienceDirect

Computers in Industry

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/co mp in d

http://dx.doi.org/10.1016/j.compind.2015.02.002

0166-3615/� 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2015.02.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2015.02.002&domain=pdf
http://dx.doi.org/10.1016/j.compind.2015.02.002
mailto:giovanni.godena@ijs.si
mailto:tomaz.lukman@ijs.si
mailto:igor.steiner@inea.si
mailto:franc.bergant@helios.si
mailto:stanko.strmcnik@ijs.si
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
http://dx.doi.org/10.1016/j.compind.2015.02.002


However, this concept concerns assigning different roles to a
particular unit, such as a vessel being both a reactor and a holding
tank, and has no impact on the repetition of information in the
recipes and their reuse.

The aim of this paper is to present a new proposal for the object
model of batch equipment and procedural control that to a large
extent minimizes the repetition of information and maximizes the
reuse of recipes. The proposal is based on a concept involving
dynamically defined and potentially overlapping unit classes or a
multiple inheritance relationship between the units and the unit
classes, i.e., on the possibility of a certain unit belonging to more
than one unit class.

The paper is structured in the following manner. Section 2
introduces object technology as a means of information-repetition
prevention and reuse enhancement in the domain of batch-process
control. Section 3 describes the ISA-88 standard object model of
equipment and procedural control as it is used in most batch
control tools and comments on its deficiencies. Section 4 presents a
new proposal for the object model of equipment and procedural
control. Section 5 briefly describes the implementation of the new
concept in an in-house-developed batch tool and illustrates the
advantages of the new approach in a real-life industrial applica-
tion. Section 6 presents the validation of the proposed concept and
Section 7 the conclusions.

2. Object technology in batch-process control

Object technology has enabled a significant positive shift in the
general process of software development. Two of the positive
effects of introducing object technology that are the most relevant
for the research presented in this paper are enhancing reuse [7,8]
and reducing information repetition [9]. This should also hold true
for batch-process control tools in accordance with the ISA-88
standard, i.e., the introduction of object models for equipment and
procedural control should prevent the repetition of information in
the recipes and enable their reuse.

At this point, some important terms and concepts of the ISA-88
standard should be introduced. The standard describes batch
control by means of three models, namely the process model,
physical model, and procedural control model. The process model
describes the hierarchical subdivision of a batch process in terms of
entities relevant from a process engineering perspective, namely
processes, process stages, process operations, and process actions.
The physical model describes the hierarchy of physical assets of an
enterprise in terms of enterprises, sites, areas, process cells, units,
equipment modules, and control modules. The procedural control
model describes (equipment) procedural elements that are
combined in a hierarchical manner to accomplish the task of a
complete process as defined by the process model. The hierarchy
consists of the procedure level (consisting of a sequential-
concurrent combination of unit procedures), the unit procedure
level (consisting of a sequential-concurrent combination of
operations), and the operation level (consisting of a sequential-
concurrent combination of phases). The entities of the procedural
control model in fact represent the processing capabilities of the
entities of the equipment model, where phase is the smallest
processing entity. The entities of the three models have the
following relation: the entities from the procedural control model,
combined with the entities from the physical model, provide
process functionality to carry out entities from the process model.
Besides the three described models, there are also recipes with
their recipe procedures, which provide a hierarchical-sequential-
concurrent decomposition of the processing required to produce a
certain product. The elements of a recipe procedure are in fact
references to the elements of equipment procedural control. Thus,
for example, at the lowest level of a recipe procedure, a recipe

phase is an abstract notation giving a reference (link) to the
corresponding equipment phase. There can be many recipe phases
for a given equipment phase, as the processing of an equipment
phase may be used by many recipe procedures. For more detailed
information on the above-described concepts, see Sections 5.1, 5.2,
and 5.3. of [1]. Detailed information on the recipe procedure/
equipment procedural control linking can be found in [1], Section
5.3.3.3.

The equipment and procedural control models implemented in
various tools compliant with the ISA-88 standard are based on
classes and instances of equipment, and on unit procedures that
can be written for a class or an instance of an equipment unit. The
basis of unit classification is its capability, i.e., the set of phases of a
particular unit. A unit class represents units of the same capability,
i.e., the same set of phases. A unit procedure for a unit class is
written only once for the unit class and may be executed on any unit
of that class. A unit class can also represent units that are not
completely identical. In that case, the unit class only has the phase
classes whose instances can be found in all the units of that class.
The other phases appear as specific phases of particular units. A unit
procedure written for a unit class can only contain the common
phases. If we would like to use some of the specific phases in the
recipe, the unit procedure has to be written for a specific unit.

The above-described model works fine in simple cases, in
particular where the equipment consists of unit classes with
identical unit instances, without specific phases. On the other
hand, in more complicated cases with not fully homogeneous unit
classes (unit instances having specific phases), which in our
experience is quite common in industry, the model fails to avoid
the duplication of information in the recipes and does not allow the
maximization of their reuse. In these cases, a model based on
multiple inheritance, instead of single inheritance, would give
much better results.

Inheritance is one of the most prominent concepts of object-
oriented technology and the key mechanism that facilitates reuse
[10,11] and reduces redundancy, i.e., the repetition of information
[9]. Inheritance should be applied to model commonality and
specialization [12,13]; however, it can also be used to model kind-
of roles, transactions, and devices [14].

Nevertheless, its use must be carefully applied since it can be
dangerous when used incorrectly [15]. It is effectively just a
mechanism for extending an application’s functionality by reusing
the functionally of the parent classes [13]. Inheritance can be
categorized into two distinct types, i.e., single inheritance, where a
child class inherits from only one parent class, and multiple
inheritance, where a child class inherits from two or more parent
classes. Multiple inheritance is more powerful and expressive than
single inheritance [16]. It also increases reuse (because of multiple
sub-classing) [13] and allows a more natural definition of the
relationships between classes [17]. The implementation and use of
multiple inheritance is non-trivial [18], since it introduces several
potential problems, e.g., repeated inheritance [19]. Consequently,
multiple inheritance is only used in some of the available object-
oriented programming languages (e.g., C++ and Eiffel). Whether
multiple inheritance simplifies or complicates the object-oriented
technology remains a matter of debate [16]. However, the benefits
of multiple inheritance have outweighed its drawbacks in some
specific domains where it is used in object-oriented modeling. For
instance, the use of multiple inheritance in geographic data
modeling is essential [20,21].

Despite the controversy, we believe that multiple inheritance is
the right mechanism for addressing the problem of the high
repetition of information in recipes and their low reuse in the
domain of batch-process control. In the remainder of this paper
we present an approach to solving the above-mentioned problem.
The approach is based on the definition of a new object model of

G. Godena et al. / Computers in Industry 70 (2015) 46–55 47



Download English Version:

https://daneshyari.com/en/article/508766

Download Persian Version:

https://daneshyari.com/article/508766

Daneshyari.com

https://daneshyari.com/en/article/508766
https://daneshyari.com/article/508766
https://daneshyari.com

