
Using logical decision trees to discover the cause of process delays
from event logs

Diogo R. Ferreira a,*, Evgeniy Vasilyev b

a Instituto Superior Técnico, University of Lisbon, Portugal
b GREE Inc., Tokyo, Japan

1. Introduction

Why does a business process become delayed? There may be
many possible reasons, but here we focus on causes that can be
inferred from run-time data about the past executions of the
process. Such data is usually recorded in the form of an event log
[1,2], which can be analyzed from a number of different
perspectives, namely the control-flow perspective, the organiza-
tional perspective, and the performance perspective:

� In the control-flow perspective, the goal is to extract a process
model from the sequence of tasks recorded in the event log
(examples of techniques are the a-algorithm [1], the heuristics
miner [3], and the genetic miner [4]).
� In the organizational perspective, there are techniques to analyze

the interaction between process participants and to extract a
social network from the event log [5,6].

� In the performance perspective, there are ways to calculate
performance indicators and to detect bottlenecks based on the
timestamp of events [7,8].

A practical case study that includes these three different
perspectives can be found in [9]. Here, we focus mainly on the
performance perspective, but we also seek causes of delay that are
possibly related to the control-flow and to the organizational
perspectives. Since an event log contains information about the
tasks that have been performed and the users who have performed
them [10], it should be possible to identify causes of delay such as:

– when a certain activity is executed;
– when a certain user participates in the process;
– when a certain user performs a certain activity;
– when a certain activity follows another activity;
– when a specific group of users participate in the process, etc.

The causes that can be considered are only limited by the type
of data recorded in the event log. If the event log includes
information about the data perspective (as in e.g. [11]), it may be
possible to find causes based on data properties as well.

As a baseline, we assume that the event log has some minimal
information about each event, namely: a case id (i.e. the process

Computers in Industry 70 (2015) 194–207

A R T I C L E I N F O

Article history:

Received 26 August 2014

Received in revised form 16 February 2015

Accepted 24 February 2015

Available online 21 March 2015

Keywords:

Process mining

Performance analysis

Logical decision trees

Regression trees

Root cause analysis

A B S T R A C T

In real-world business processes it is often difficult to explain why some process instances take longer

than usual to complete. With process mining techniques, it is possible to do an a posteriori analysis of a

large number of process instances and detect the occurrence of delays, but discovering the actual cause

of such delays is a different problem. For example, it may be the case that when a certain activity is

performed or a certain user (or combination of users) participates in the process, the process suffers a

delay. In this work, we show that it is possible to retrieve possible causes of delay based on the

information recorded in an event log. The approach consists in translating the event log into a logical

representation, and then applying decision tree induction to classify process instances according to

duration. Besides splitting those instances into several subsets, each path in the tree yields a rule that

explains why a given subset has an average duration that is higher or lower than other subsets of

instances. The approach is applied in two case studies involving real-world event logs, where it succeeds

in discovering meaningful causes of delay, some of which having been pointed out by domain experts.

� 2015 Elsevier B.V. All rights reserved.

* Corresponding author at: Instituto Superior Técnico, Campus do Taguspark,

Avenida Prof. Dr. Cavaco Silva, 2744-016 Porto Salvo, Portugal.

Tel.: þ351 21 423 35 52.

E-mail addresses: diogo.ferreira@tecnico.ulisboa.pt (D.R. Ferreira),

vasiliev.evgeni@gmail.com (E. Vasilyev).

Contents lists available at ScienceDirect

Computers in Industry

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/co mp in d

http://dx.doi.org/10.1016/j.compind.2015.02.009

0166-3615/� 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2015.02.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2015.02.009&domain=pdf
http://dx.doi.org/10.1016/j.compind.2015.02.009
mailto:diogo.ferreira@tecnico.ulisboa.pt
mailto:vasiliev.evgeni@gmail.com
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
http://dx.doi.org/10.1016/j.compind.2015.02.009


instance identifier), a task, a user, and a timestamp. The analysis is
based on the total time that each process instance takes to
complete. This will be referred to as duration and it is measured
from the timestamp of the first event to the timestamp of the last
event recorded for a given process instance.1 An instance is said to
be delayed if it takes longer than usual to complete, meaning that it
takes longer than the average duration of all instances recorded in
the event log.

We transform the event log into a logic representation, so that it
becomes possible to use inductive reasoning to find the cause of
delays. In particular, we capture the information in the event log as
a set of first-order logical predicates, and we feed this knowledge
base to a decision tree learner which induces a logical decision tree
[12,13]. This decision tree splits the process instances into a set of
classes according to their duration. Each class is defined by a
specific rule, which is expressed as a conjunction of predicates (e.g.
‘‘the instances where task a is performed and user u1 participates
have an average duration of 252.4 h’’). This rule can be interpreted
as the reason why that group of instances has such duration. For
those classes of instances which take longer to complete, we take
the rule as an indication of a possible reason of delay.

The main challenge in this approach is not in inducing the
logical decision tree (an algorithm for that purpose, known as TILDE

[12], already exists), but in defining the predicates that will appear
in such tree. In essence, those are the predicates that will be used to
express the cause of delays. The approach we present here is based
on two layers of predicates:

� The first layer comprises a small set of base predicates that are
used to create a logical representation of events as they have
been recorded in the event log.
� The second layer consists in a set of rules that define new

predicates in terms of the base predicates. These new predicates
are meant to represent high-level concepts such as the flow
between tasks or the handover of work between users, and they
can be automatically inferred from the logical representation of
the event log.

In real-world applications, it is possible for the analyst to use
custom predicates to focus on domain-specific issues or to analyze
specific causes of delay. Therefore, the main goal of this work is
two-fold: on one hand, we aim to show how effective the use of
logical decision trees can be in discovering the causes of delay and,
on the other hand, we intend to illustrate how the analyst may use
of custom predicates to analyze specific causes of delay. These
goals are better achieved by resorting to concrete examples, so we

present two case-study applications involving real-world event
logs. The approach itself is also presented by means of a simple
example.

The structure of the paper is as follows: Section 2 develops the
base predicates and rules that lay the foundation for a logical
representation of the event log. Section 3 discusses the induction of
logical decision trees and the use of regression to support
continuous variables, as is the case with duration. A first example
of a logical decision tree which captures a cause of delay is also
introduced in Section 3. Then Section 4 presents two case studies
using real-world event logs. The second case study illustrates the
use of custom predicates. Finally, the paper ends with an overview
of some related works.

2. Event log representation

Consider a simple purchase process which can be described as
follows:

An employee fills out a requisition form and sends it to a
manager for approval. If the requisition is not approved, it is
archived and the process ends. Otherwise, the requisition is
approved, and the requested product is ordered from a supplier.
Then two things will happen in parallel: the warehouse receives
the product and updates the stock, and the accounting
department takes care of payment to the supplier. When these
tasks are complete, the requisition is closed, and the process
ends.

A model for this process, using the BPMN language,2 is shown in
Fig. 1. Each task in this process is assigned to some user (e.g. u1, u2,
etc.). There may be several users who are able to perform the same
task, but only one user will be selected to perform the task for a
given process instance. On the other hand, each user may be
assigned multiple tasks, either from the same process instance or
from different process instances. The result is that each user has its
own list of work assignments (a.k.a. ‘‘task list’’, ‘‘work list’’, or ‘‘to-
do list’’), and it is assumed that users carry out their assignments
one at a time.

Table 1 shows an excerpt of a sample event log that can be
generated from such process. This is similar to the event logs that
are typically used for process mining (see e.g. [14,15]). In the
excerpt of Table 1 there are only three process instances, but it is
possible to recognize several features of the process. For example,
case 1 has a trace in the form abdefgh, while case 2 has a trace in the
form abdgefh, which comes as a result of the parallelism between g

and the branch ef. Also, in cases 1 and 2 the requisition is approved,

Fig. 1. BPMN model of a simple purchase process.

1 The concept of duration will be discussed in more detail in Section 2.2. 2 http://www.omg.org/spec/BPMN/2.0/.

D.R. Ferreira, E. Vasilyev / Computers in Industry 70 (2015) 194–207 195

http://www.omg.org/spec/BPMN/2.0/


Download English Version:

https://daneshyari.com/en/article/508778

Download Persian Version:

https://daneshyari.com/article/508778

Daneshyari.com

https://daneshyari.com/en/article/508778
https://daneshyari.com/article/508778
https://daneshyari.com

