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a b s t r a c t 

We analyze American put options in a hyper-exponential jump-diffusion model. Our contribution is three- 

fold. Firstly, by following a maturity randomization approach, we solve the partial integro-differential 

equation and obtain a tight lower bound for the American option price. Secondly, our method allows 

to disentangle the contributions of jumps and diffusion for the early exercise premium. Finally, using 

American-style options on the S&P 100 index from January 2007 until December 2012, we estimate 

various hyper-exponential specifications and investigate the implications for option pricing and jump- 

diffusion disentanglement. We find that jump risk accounts for a large part of the early exercise premium. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The valuation of American options has been one of the most 

important topics in mathematical finance for almost five decades. 

A fully analytic solution to the problem, even in the simplest set- 

ting, has not yet been obtained whatsoever. The main difficulty 

stems from the fact that American options allow for an early exer- 

cise feature, which requires solving for the option price as a func- 

tion of a free boundary that is not known a priori. A common ap- 

proach is to use numerical procedures. 1 However, numerical meth- 
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1 Broadie and Detemple (2004) and Detemple (2005) provide a comprehensive 

overview of different pricing methods for American-style options. 

ods are generally devoid of financial intuition and meaningful in- 

terpretations. Moreover, their implementation is often computa- 

tionally expensive, even more so when we leave the classical Black 

and Scholes (1973) setting. 

A huge part of the literature on analytic pricing of American op- 

tions in non-Gaussian settings deals with perpetual American op- 

tions, which can be solved in closed-form under certain assump- 

tions regarding the jumps of the underlying process, and because 

the early exercise boundary is flat. 2 Moreover, they very often ex- 

clude the possibility of overshooting a predefined constant barrier 

by confining jumps to be always in the opposite direction from 

the barrier. Hence, many models are based on spectrally one-sided 

Lévy processes in order to utilize renewal-type integral equations 

or fluctuation identities. The possibility of an overshoot of the ex- 

ercise boundary poses several mathematical problems. We need 

not only an exact distribution of the overshoot, but also the de- 

pendency structure between the overshoot and the first passage 

time. Moreover, for finite-maturity American options, the optimal 

stopping time is actually a first passage time of an unknown non- 

uniform space-time boundary. 

2 See, e.g., Boyarchenko and Levendorski ̌ı, 20 02; Mordecki, 20 02; Chesney and 

Jeanblanc, 2004; Alili and Kyprianou, 2005 and references therein. 
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Our first goal in this paper is the valuation of finite-maturity 

American put options in the hyper-exponential jump-diffusion 

model (HEJD) introduced by Lipton (2002) . The logarithm of the 

asset price is assumed to follow a process, which is a mixture of 

a drifted Brownian motion and a compound Poisson process with 

an arbitrary number of positive and negative types of exponen- 

tially distributed jumps of finite activity. 3 We choose to work in 

this particular framework, because it is flexible enough to capture 

the main empirical features of asset returns and option prices. 4 

Furthermore, due to the memorylessness of the exponential dis- 

tribution, analytic pricing and hedging of vanilla and certain exotic 

options in a HEJD framework is feasible, hence making this model 

a plausible candidate for our purpose. 

To derive the price of an American put, we adopt a ma- 

turity randomization approach. We study the Laplace-Carson 

transform with respect to the time to maturity of the partial 

integro-differentialequation (PIDE) and the corresponding initial 

and boundary conditions describing the dynamics of the Ameri- 

can option price. Instead of using a sequence of Erlangian random 

variables suggested in Carr (1998) , we rely on a different sequence 

of random variables following a distribution suggested in queueing 

theory literature by Gaver (1966) . Both approaches converge point- 

wise to Dirac’s delta function centered at the residual maturity. 

However, while Carr’s maturity randomization requires to solve re- 

cursively a set of differential equations, the alternative randomiza- 

tion approach relies on the computation of the Gaver’s functionals, 

resulting in a much simpler and faster computational procedure. 

For option pricing applications, the alternative randomization ap- 

proach was studied in, e.g., Kou and Wang (2003) ; Sepp (2004) ; 

Kimura (2010) , and Hofer and Mayer (2013) . However, American 

options have not yet been priced using this method. Hence, our re- 

sults represent a genuine contribution to the existing literature on 

maturity randomization. 5 We support our theoretical results with 

numerical examples and demonstrate that our approach represents 

a fast and accurate pricing engine. 

Our second contribution is concerned with analyzing the im- 

portance of jump risk for American options. Although we borrow 

the syntax “disentanglement of diffusion from jumps” from Aït- 

Sahalia (2004) , the semantics is quite different in our study. While 

Aït-Sahalia (2004) takes an econometric perspective and studies 

the effect of jumps on the estimation of the diffusion component 

in asset returns using high-frequency data, we study the implica- 

tions of a possible overshoot for the early exercise premium. By 

combining the martingale approach and the PIDE method in the 

Laplace transform framework, we can disentangle the contribution 

of jumps and diffusion for the American early exercise premium. 

Our disentanglement result pertains to the risk-neutral world and 

is model-dependent in the sense that it relies on the assumption 

that the underlying process has both diffusion and finite activ- 

ity jump components. However, unlike econometric approaches, it 

holds irrespectively of the data frequency. 

The impact of jumps on American option prices has been re- 

cently considered in Chiarella and Ziogas (2009) . They examine 

3 General properties of the HEJD model are thoroughly analyzed and discussed in 

Cai (2009) . 
4 Jeannin and Pistorius (2010) and Crosby et al. (2010) show that any Lévy pro- 

cess with completely monotone Lévy density can be approximated by a HEJD pro- 

cess. Such Lévy models include, e.g., the Variance-Gamma, the Normal-Inverse- 

Gaussian, the Carr-Geman-Madan-Yor model. 
5 American option pricing in double-exponential and hyper-exponential jump- 

diffusion setting has been studied Kou and Wang (2004) and Cai and Sun (2014) . 

These papers are based on the quadratic approximation of Barone-Adesi and Wha- 

ley (1987) . Avram et al. (2002) consider fluctuation theory approach in a spectrally 

one-sided (positive or negative) Lévy model. Levendorski ̌ı (20 04a ); 20 04b ) analyze 

regular Lévy processes of exponential type using the Wiener-Hopf factorization for- 

mula embedded in the dynamic programming approach. 

jump effects by comparing the shape of the early exercise bound- 

ary with and without jumps, keeping the overall volatility con- 

stant. In contrast, we consider the disentanglement of jumps and 

diffusion directly by analytically decomposing the early exercise 

premium into the respective contributions. Hence, we do not need 

to rely on a moment-based condition. More importantly, our ap- 

proach does not require the use of different models, which may 

distort the inference due to model misspecification. In our setting, 

we can disentangle jumps from the diffusion component within 

the same model. Therefore, to the best of our knowledge, our dis- 

entanglement idea for American options has not been previously 

studied in the literature. 

Finally, as our third contribution, we estimate a range of HEJD 

models using American options on the S&P 100 index to pro- 

vide more intuition and to demonstrate the disentanglement of 

jumps from diffusion on real data. We focus on short-term op- 

tions with time to maturity of up to two months and perform 

sequential (weekly) calibration via penalized weighted nonlinear 

least squares. The chosen data set and the sequential calibration al- 

low us to study the time variation in the model parameters. Since 

our sample includes the recent financial crisis, we can study the 

importance of diffusion and jumps during calm and turbulent pe- 

riods. 

The reminder of the paper is organized as follows. Section 2 in- 

troduces the hyper-exponential jump-diffusion model and presents 

our theoretical contributions regarding the pricing of European and 

American put options, and the early exercise jump-diffusion dis- 

entanglement. In Section 3 , we present and discuss our calibra- 

tion results as well as the implications for the disentanglement. 

Section 4 concludes the paper. 

2. Option pricing and disentanglement in the HEJD model 

2.1. Model formulation 

We consider a filtered probability space (�, F , F = {F t , t ≥
0 } , Q ) satisfying the usual assumptions. The asset price dynamics 

under the fixed risk-neutral probability measure Q follows a hyper- 

exponential jump-diffusion process 

dS t 

S t −
= (r − δ − λζ ) dt + σdW t + d 

( 

N t ∑ 

i =1 

(V i − 1) 

) 

, (1) 

where { W t , t ≥ 0} is a standard Brownian motion under Q . The in- 

terest rate r ∈ R + , the dividend yield δ ∈ R + , and the volatility σ ∈ 

R + are constants. 6 The Poisson process { N t , t ≥ 0} is characterized 

by the jump intensity parameter λ ∈ R + and { Y i := log (V i ) : i = 

1 , 2 , . . . } is a sequence of independent and identically distributed 

hyper-exponential random variables with probability density func- 

tion 

ϕ Y (y ) = 

m ∑ 

i =1 

p i ηi e 
−ηi y 1 { y ≥0 } + 

n ∑ 

j=1 

q j θ j e 
θ j y 1 { y< 0 } , (2) 

where m, n ∈ N . The coefficients p i > 0 for all i = 1 , . . . , m and q j > 

0 for all j = 1 , . . . , n are probabilities of different kinds of positive 

and negative jumps, respectively, satisfying 
∑ m 

i =1 p i + 

∑ n 
j=1 q j = 1 . 

Similarly, the parameters ηi > 1 for all i = 1 , . . . , m and θ j > 0 

for all j = 1 , . . . , n are magnitude parameters of different kinds of 

random upward and downward jumps, respectively. Furthermore, 

6 We remark that the assumption of positive interest rates is, under reasonable 

parameter specifications, not restrictive for our analysis and implementation using 

the Gaver–Stehfest canadization method. However, for this numerical method, we 

require dividends to be continuous and deterministic. 
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