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1. Introduction

As the control systems (CSs) become more and more complex
and they need to cope with new situations to which they were not
exposed before, the cognitive control capabilities are more and
more demanding. The biological systems approach the problem of
solving complex tasks not mathematically but by combining the
accumulated knowledge stored in memory, called primitives or
strategies [1]. Therefore, by combining primitives one living
organism is capable of achieving more complex manoeuvres. The
living organism next subsequently adds this capability to its
current knowledge base, and an extension of the knowledge base is
achieved. Several abilities are needed for the brain of biological
systems, such as:

- strategy projection to achieve the goal, associated with reasoning
and planning,

- decomposition of strategies into other well-known strategies,
that also represents a planning ability,

- necessity of storing the learned strategies, associated with the
memory,

- feedback in order to improve new strategies by repeated trials,
that also represents a learning ability.

In this regard the brain acts as a higher level hierarchical control
planner and supervisor that coordinates the lower level feedback
control loops.

Several approaches to learning from primitives are presented
in the literature. These approaches are grouped in: time-scale
transformation approaches, temporal concatenation of primitive-
based approaches, and time-based decomposition approaches,
briefly discussed next.

Representative time-scale transformation approaches are pre-
sented in [2,3]. An iterative learning control (ILC)-based approach
is suggested in [2] to improve the manoeuvres of an underwater
robotic manipulator. The approach considers a time scale
transformation. A demonstration by learning approach using
attractor dynamics is proposed in [3].

Temporal concatenations of primitive-based approaches are
reported in [4–6]. The feasibility of primitive motion tasks for UAVs
is analyzed in [4]. The concept of library of motion primitives is
proposed in [5]. An A* search algorithm for the optimal temporal
concatenation of primitives is suggested in [6].
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A B S T R A C T

This paper suggests an optimal behaviour prediction mechanism for Multi Input-Multi Output control

systems in a hierarchical control system structure, using previously learned solutions to simple tasks

called primitives. The optimality of the behaviour is formulated as a reference trajectory tracking

problem. The primitives are stored in a library of pairs of reference input/controlled output signals. The

reference input primitives are optimized at the higher hierarchical level in a model-free iterative

learning control (MFILC) framework without using knowledge of the controlled process. Learning of the

reference input primitives is performed in a reduced subspace using radial basis functions for

approximations. The convergence of the MFILC learning scheme is achieved via a Virtual Reference

Feedback Tuning design of the feedback controllers in the lower level feedback control loops. The new

complex trajectories to be tracked are decomposed into the output primitives regarded as basis

functions. Next, the optimal reference input fed to the control system in order to track the desired new

trajectory is then recomposed from the reference input primitives. The efficiency of this approach is

demonstrated on a case study concerning the control of a two-axis positioning mechanism, and the

experimental validation is offered.

� 2015 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +40 256 403229; fax: +40 256 403214.

E-mail address: radu.precup@upt.ro (R.-E. Precup).

Contents lists available at ScienceDirect

Computers in Industry

journa l homepage: www.e lsevier .com/ locate /compind

http://dx.doi.org/10.1016/j.compind.2015.03.004

0166-3615/� 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2015.03.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2015.03.004&domain=pdf
http://dx.doi.org/10.1016/j.compind.2015.03.004
mailto:radu.precup@upt.ro
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
http://dx.doi.org/10.1016/j.compind.2015.03.004


A time-based decomposition approach is given in [7]. The
primitives are B-spline functions, considered as elements of the
library of primitives. The real-time planning of trajectories is
performed using the learned B-spline primitives and combining
them in the LTI systems framework.

A comprehensive review of ILC is impossible and in the
following only a short review on model-based vs Model-Free
Iterative Learning Control (MFILC) approaches is presented. The
ILC-based solving of optimal control problems is formulated in [8–
11], time and frequency domain convergence analyses are
conducted in [8], the stochastic approximation is treated in [12],
and the output tracking is discussed in [13]. The affine constraints
are handled in [14] by the transformation of ILC problems with
quadratic objective function (o.f.s) into convex quadratic pro-
grammes. The system impulse response is estimated in [15] using
input/output measurements from previous iterations and next
used in a norm-optimal ILC structure that accounts for actuator
limitations by means of linear inequality constraints. Other model-
based approaches for constrained ILC are proposed in [16,17], but
they differ from the model-free approach suggested in [18]. A data-
driven approach to estimate the Markov matrices from input/
output data using MFAC is given in [19] and integrated in a
terminal ILC framework. A learning approach that gives the
parameters of motion primitives for achieving flips for quad-
rocopters is proposed in [20], but it makes use of approximate
simple models of the process. Similar formulations with reinforce-
ment learning for policy search using approximate models and
signed derivative are given in [21]. Neural networks applied to ILC
in a model-based approach are also reported in [22]. The ILC-based
training of neural networks has been proposed in [23]. Other
existing approaches to optimal feed-forward design are presented
in [24,25].

Building upon recent results given in [18], this paper’s main
contributions with respect to the state-of-the-art are:

- The concept of primitive-based ILC is proposed. This concept
aims the improvement of the execution of different tasks in terms
of the time-based decomposition of complex tasks in simpler
tasks.

- The concept of primitives is embedded into an original
experiment-based iterative reference input tuning algorithm,
formulated as an MFILC algorithm for Multi Input-Multi Output
(MIMO) reference trajectory tracking problem.

- The guaranteed convergence of the MFILC scheme by using the
closed-loop transfer functions (t.f.s) imposed via a Virtual
Reference Feedback Tuning (VRFT) model-free design of the
feedback controllers.

- The reduction of the dimension of the optimized reference inputs
in the ILC learning scheme is achieved using radial basis functions
(RBFs) for approximation purposes.

The combination of these two contributions leads to a novel
control approach referred to as model-free primitive-based
approach to trajectory tracking which uses very little information
about the controlled process. Our approach allows for the near-
optimal solutions that correspond to the new trajectories to be
tracked can be obtained on the basis of the composition of already
learned/optimized motions. In addition, our approach imitates the
behaviour of biological systems.

This paper uses the previously developed tools for the MFILC-
based reference input signal optimization to propose a new
concept that improves the execution of different tasks on the basis
of previous experience in executing simpler tasks called primitives.
An optimal execution is a priori inferred for the new task, without
executing the task and without the need to learn from multiple
runs/trials/iterations/passes. The merge of MFILC and primitive

learning leads to a new control approach referred to as model-free
primitive-based approach to trajectory tracking.

Our approach consists of two steps. In the first one, primitive
pairs consisting of sets of reference input primitives and controlled
output primitives are optimized with respect to a trajectory
tracking criterion in an MFILC fashion. In the second step, the new
trajectory to be tracked is decomposed in terms of the output
primitives. The optimal reference inputs are recomposed from the
reference input primitives, they are thus straightforward comput-
ed without learning from repeated trials of the tracking task. The
CSs become endowed with planning, reasoning and learning
capabilities.

The approach suggested in this paper leads to hierarchical CS
structures, with MFILC at the higher hierarchical level and VRFT at
the lower hierarchical level. This structure carries out a synergy of
artificial intelligence, computers and control, with promising
industrial implementations, exemplified here in a representative
3D crane system application.

This paper is organized as follows: Section 2 gives the process
model specific to the MIMO position control of a 2D system that
belongs to a 3D crane. The reference trajectory tracking problem is
largely discussed in Section 3, where the convergence analysis is
performed and the reduction of the dimension of the optimized
reference inputs is also introduced. The MFILC primitive-based
solution to a novel trajectory tracking problem is offered in Section
4. The approximation of the output primitives is treated in Section
5 using Gaussian kernels as universal function approximators. The
proposed approach is validated by experimental results in Section
6. The conclusions are highlighted in Section 7.

2. The controlled process

The simplified linear model of the process in the MIMO 3D crane
system concerning only the XY-plane positioning of the cart [26]
consists of the following t.f.s:

HxðsÞ ¼
Y1ðsÞ
U1ðsÞ

¼ 0:173

sð1þ 0:0743sÞ;

HyðsÞ ¼
Y2ðsÞ
U2ðsÞ

¼ 0:172

sð1þ 0:129sÞ;
(1)

where: U1(s) is the Laplace transform of the first control input
u1(t) [%], i.e., the PWM duty cycle driving the X-axis DC motor, U2(s)
is the Laplace transform of the second control input u2(t) [%], i.e.,
the PWM duty cycle driving the Y-axis DC motor, Y1(s) is the
Laplace transform of y1 [rad] – the first process output, i.e., the X-
axis position of the cart, and Y2(s) is the Laplace transform of
y2 [rad] – the second process output, i.e., the Y-axis position of the
cart. The values of all parameters of the model (1) reflect the
electro-mechanical behaviour of the process illustrated in Fig. 1.

The DC motors being used to generate motion on both axes are
driven by a voltage in the interval �12 V . . . 12 V. The optical
encoders used to measure the position on each axis are high
resolution capable of generating 4096 pulses per rotation. The
computer communicates with a power interface board via USB
connection. The Xilinx1 chip in the board contains the PWM logic
to operate the DC motors and the activation and read logic of the
encoders. The power interface board is then connected with the rig
through a power interface unit which also operates both ways and
on one hand it amplifies the PWM signal while on the other hand it
converts the pulse signals from the encoders to 16-bit digital
numbers.

As observed in Fig. 1, a rail which contains the cart is moved on
the X-axis using one DC motor and on this moving rail the Y-axis
motion is achieved using the other DC motor. For the purpose of
the following case study, no payload is attached to the cart. Several
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