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a b s t r a c t

This note studies robust estimation of the autoregressive (AR) parameter in a nonlinear, nonnegative AR
model driven by nonnegative errors. It is shown that a linear programming estimator (LPE), considered by
Nielsen and Shephard (2003) among others, remains consistent under severe model misspecification.
Consequently, the LPE can be used to test for, and seek sources of, misspecification when a pure autore-
gression cannot satisfactorily describe the data generating process, and to isolate certain trend, seasonal
or cyclical components. Simple and quite general conditions under which the LPE is strongly consistent in
the presence of serially dependent, non-identically distributed or otherwise misspecified errors are given,
and a brief review of the literature on LP-based estimators in nonnegative autoregression is presented.
Finite-sample properties of the LPE are investigated in an extensive simulation study covering a wide
range of model misspecifications. A small scale empirical study, employing a volatility proxy to model
and forecast latent daily return volatility of three major stock market indexes, illustrates the potential
usefulness of the LPE.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, nonlinear and nonstationary time series
analysis have gained much attention. This attention is mainly
motivated by evidence that many real life time series are non-
Gaussian with a structure that evolves over time. For example,

many economic time series are known to show nonlinear features
such as cycles, asymmetries, time irreversibility, jumps, thresholds,
heteroskedasticity and combinations thereof. This note considers
robust estimation in a (potentially) misspecified nonlinear, non-
negative autoregressive model, that may be a useful tool for
describing the behaviour of a broad class of nonnegative time
series.

For nonlinear time series models it is common to assume that
the errors are i.i.d. with zero-mean and finite variance. Recently,
however, there has been considerable interest in nonnegative
models. See, e.g., Abraham and Balakrishna (1999); Engle (2002);
Tsai and Chan (2006); Lanne (2006) and Shephard and Sheppard
(2010). The motivation to consider such models comes from the
need to account for the nonnegative nature of certain time series.
Examples from finance include variables such as absolute or
squared returns, bid-ask spreads, trade volumes, trade durations,
and standard volatility proxies such as realized variance, realized
bipower variation (Barndorff-Nielsen and Shephard, 2004) or real-
ized kernel (Barndorff-Nielsen et al., 2008).1 This note considers a
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nonlinear, nonnegative autoregressive model driven by nonnegative
errors. More specifically, it considers robust estimation of the AR
parameter b in the autoregression

yt ¼ bf ðyt�1; . . . ; yt�sÞ þ ut; ð1Þ

with nonnegative (possibly) misspecified errors ut . Potential distri-
butions for ut include lognormal, gamma, uniform, Weibull, inverse
Gaussian, Pareto and mixtures of them. In some applications, robust
estimation of the AR parameter is of interest in its own right. One
example is point forecasting, as described in Preve et al. (2015).
Another is seeking sources of model misspecification. In recognition
of this fact, this note focuses explicitly on the robust estimation of b
in (1). If the function f is known, a natural estimator for b given the
sample y1; . . . ; yn of size n and the nonnegativity of the errors is

b̂n ¼ min
ysþ1

f ðys; . . . ; y1Þ
; . . . ;

yn
f ðyn�1; . . . ; yn�sÞ

� �
: ð2Þ

This estimator has been used to estimate b in certain restricted
first-order autoregressive, AR(1), models (e.g. Anděl, 1989b; Datta
and McCormick, 1995; Nielsen and Shephard, 2003). An early ref-
erence of the autoregression in (1) is Bell and Smith (1986), who
considers the linear AR(1) specification f ðyt�1; . . . ; yt�sÞ ¼ yt�1 to
model water pollution and the accompanying estimator in (2) for
estimation.2 The estimator in (2) can, under some additional condi-
tions, be viewed as the solution to the linear programming problem
of maximizing the objective function gðbÞ ¼ b subject to the n� s lin-
ear constraints yt � bf ðyt�1; . . . ; yt�sÞ P 0 (cf. Feigin and Resnick,
1994). Because of this, we will refer to it as a LP-based estimator
or LPE. As it happens, (2) is also the (on y1; . . . ; ys) conditional max-
imum likelihood estimator (MLE) for b when the errors are exponen-
tially distributed (cf. Anděl, 1989a). What is interesting, however, is
that b̂n is a strongly consistent estimator of b for a wide range of
error distributions, thus the LPE is also a quasi-MLE (QMLE).

In all of the above references the errors are assumed to be i.i.d.
To the authors knowledge, there has so far been no attempt to
investigate the statistical properties of LP-based estimators in a
non i.i.d. time series setting. This is the focus of the present note.
In that sense, the note can be viewed as a companion note to
Preve and Medeiros (2011) in which the authors establish
statistical properties of a LPE in a non i.i.d. cross-sectional setting.
Estimation of time series models with dependent, non-identically
distributed errors is important for two reasons: First, the assump-
tion of independent, identically distributed errors is a serious
restriction. In practice, possible causes for non i.i.d. or misspecified
errors include omitted variables, measurement errors and regime
changes. Second, traditional estimators, like the least squares esti-
mator, may be inconsistent when the errors are misspecified. In
some applications the errors may also be heavy-tailed. The main
theoretical contribution of the note is to provide conditions under
which the LPE in (2) is consistent for the unknown AR parameter in
(1) when the errors are serially dependent, non-identically dis-
tributed and heavy-tailed.

The remainder of this note is organized as follows. In Section 2
we give simple and quite general conditions under which the LPE is
a strongly consistent estimator for the AR parameter, relaxing the
assumption of i.i.d. errors significantly. In doing so, we also briefly
review the literature on LP-based estimators in nonnegative
autoregression. Section 3 reports the simulation results of an
extensive Monte Carlo study investigating the finite-sample per-
formance of the LPE and at the same time illustrating its robust-
ness to various types of model misspecification. Section 4 reports
the results of a small scale empirical study, and Section 5

concludes. Mathematical proofs are collected in the Appendix. An
extended Appendix (EA) available on request from the author con-
tains some results mentioned in the text but omitted from the note
to save space.

2. Theoretical results

In finance, many time series models can be written in the form
yt ¼

Pp
i¼1bif iðyt�1; . . . ; yt�sÞ þ ut . A recent example is Corsi’s (2009)

HAR model.3 In this section we focus on the particular case when
p ¼ 1 and the errors are nonnegative, serially correlated, possibly
heterogeneously distributed and heavy-tailed random variables.
The case when p ¼ 1 is special in our setting as the linear program-
ming problem of maximizing the objective function
gðb1; . . . ;bpÞ ¼

Pp
i¼1bi subject to the n� s linear constraints

yt �
Xp
i¼1

bif iðyt�1; . . . ; yt�sÞ P 0

(cf. Feigin and Resnick, 1994) then has an explicit solution. This sim-
plifies the statistical analysis of the LPE. In general (p > 1), one has
to rely on numerical methods.

2.1. Assumptions

We give simple and quite general assumptions under which the
LPE converges with probability one or almost surely (a.s.) to the
unknown AR parameter.

Assumption 1. The autoregression fytg is given by

yt ¼ bf ðyt�1; . . . ; yt�sÞ þ ut; t ¼ sþ 1; sþ 2; . . .

for some function f : Rs ! R, AR parameter b > 0, and (a.s.) positive
initial values y1; . . . ; ys. The errors ut driving the process are nonneg-
ative random variables.

Assumption 1 includes error distributions supported on ½g;1Þ,
for any unknown nonnegative constant g, indicating that an inter-
cept in the process is superfluous (Section 3.1.2). It also allows us
to consider various mixture distributions that can account for data
characteristics such as jumps (Section 3.3.2). The next assumption
concerns the potentially multi-variable function f, which allows for
various lagged or seasonal specifications (Section 3.1.3).

Assumption 2. The function f : Rs ! R is known (measurable and
nonstochastic), and there exist constants c > 0 and r 2 f1; . . . ; sg
such that f ðxÞ ¼ f ðx1; . . . ; xr ; . . . ; xsÞ P cxr when all of its arguments
are nonnegative.

Assumptions 1 and 2 combined ensure the nonnegativity of
fytg, indicating that the process may be used to model durations,
volatility proxies, and so on. Assumption 2 is, for instance, met
by elementary one-variable functions such as exs ; sinh xs and any
polynomial in xs of degree higher than 0 with positive coefficients.4

Thus, in contrast to Anděl (1989b), we allow f to be non-monotonic.

Assumption 3. The error at time t is given by

ut ¼ lt þ rtet; t ¼ sþ 1; sþ 2; . . .

2 Bell and Smith (1986) refer to the LPE as a ‘quick and dirty’ nonparametric point
estimator.

3 The HAR model of Corsi can be written as yt ¼
P3

i¼1bi f iðyt�1; . . . ; yt�22Þ þ ut ,
where f 1ðyt�1; . . . ; yt�22Þ ¼ yt�1; f 2ðyt�1; . . . ; yt�22Þ ¼ yt�2 þ . . .þ yt�5; f 3ðyt�1; . . . ;

yt�22Þ ¼ yt�6 þ . . .þ yt�22 and yt is the realized volatility over day t. Here p ¼ 3 and
s ¼ 22.

4 An interesting example of a multi-variable function f is given by the AR index
process considered by Im et al. (2006) for which f ðxÞ ¼ x1 þ . . .þ xs or, equivalently,
f ðyt�1; . . . ; yt�sÞ ¼ yt�1 þ . . .þ yt�s . The AR index models of order 1, 5 and 22 all can be
viewed as special cases of Corsi’s (2009) HAR model.
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