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a b s t r a c t

Evaluating competing multifactor asset pricing models involves comparing the statistical significance of
their mean pricing errors (alphas). Unfortunately, this comparison favors imprecisely estimated models
because p-values tend to be higher in more noisy models. To avoid false impressions of relative success at
tests for zero mean pricing errors, we develop a notion of comparative p-values and suggest comparing
these instead of the raw p-values. This comparison gives more precisely estimated models a fairer chance
or, equivalently, quantifies how much easier it is for imprecisely estimated models, by comparison, to
pass the test.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

To be deemed successful, a multifactor asset pricing model
should meet two requirements. First, it should explain the
expected excess returns better than alternative models that use
different factors. Measures for this are the R2 and significance tests
for the factor exposures (for time-series regressions) or for the esti-
mated prices of covariance risks (for cross-sectional regressions).
Second, the covariance risks should explain all of the expected
excess returns. This means not just that additional factors should
be insignificant but also that, in regressions of excess returns on
the factors, there should be no role for intercepts (the alphas).
The latter condition can be tested by means of significance tests
of the estimated alphas, separately or jointly.1 This paper focuses
on zero-alpha tests and particularly on the issue of unequal power
of the competing regressions.

In Fama and French (2012), the term ‘‘power” occurs 21 times
and is concentrated in the discussions of the test results and the
comparison across models. They distinguish two problem

situations, those with ‘‘too much” and those with ‘‘too little”
power. The first arises when a model’s R2 is comparatively high
and the power is, therefore, probably adequate. The null hypothe-
sis of zero alphas is then sometimes rejected even when the pricing
errors are small. Second, it may occur that ‘‘the regressions fit less
tightly and power is a problem” (Fama and French, 2012, p. 458)
because then the zero-alpha null hypothesis is easily accepted
even when the pricing errors are relatively large.

Thus, the twin criteria of a good fit and zero alphas often contra-
dict each other, which has implications for the comparison of com-
peting models. In particular, comparing p-values of the zero-alpha
null across models is contentious because the precision of the esti-
mated alphas differs across models. Similarly, in a GMM frame-
work, comparing Hansen’s (1982) J statistics across alternative
asset pricing models is controversial because it favors more noisy
models (Jagannathan and Wang, 1996; Hansen and Jagannathan,
1997). Jagannathan and Wang (1996, p. 18) argue that ‘‘if a model
contains ‘more noise,’ [. . .] then the value of the quadratic form will
be smaller. In this case, it would be misleading to conclude that the
‘more noisy’ the model, the better it performs.” In the same vein,
Cochrane (2005, p. 216) notes that ‘‘it has proved nearly irresistible
for authors to claim success for a new model over previous ones by
noting improved JT statistics, despite different weighting matrices,
different moments, and sometimes much larger pricing errors.”
Again, the underlying problem is the unequal precision of the com-
peting model estimates. In short, if a new model has ‘‘too little
power” (i.e., its alpha estimates have greater standard errors than
those in competing models) and rejects the zero-alpha null less
often, one may well wonder about the extent to which this reflects
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poor precision rather than a genuine improvement. Likewise, ‘‘too
much power” is a potential issue when the new model has more
tightly estimated alphas and rejects the zero-alpha null more
often.

In this paper, we compare zero-alpha p-values across models in
a way that equalizes the precision of the estimated alphas. Our
model comparisons are pairwise and we treat the models, new
and existing, symmetrically. For a given pair of models and a
single-alpha comparison, we revise the p-value of the model with
the highest precision of the estimated alpha. Specifically, we ask
what the p-value would have been had the precision been as poor
as in the less-precise model. This means that we add to the esti-
mated alpha of the more precise model a zero-mean random term
with a standard deviation chosen such that the precision of the
estimated alphas of the two models become equal. Each possible
value of this random term implies a corresponding p-value of the
zero-alpha null, and integrating this p-value over its distribution
gives the comparative p-value, as we call it, of the more precise
model. For the less-precise model, the comparative p-value is the
same as the unmodified p-value, so that the two models can then
be compared in terms of that metric. The comparison will reveal
whether any success at the zero-alpha test of the lower-precision
model relative to the more precise model is primarily due to its
low precision rather than to a genuine improvement. For joint
zero-alpha tests, the comparative p-values are defined similarly:
for each model, we augment the estimated vector of alphas with
a zero-mean random vector to equalize the precision of the model
estimates and integrate the p-value derived from the ensuing Wald
statistic over its distribution.

We emphasize that we make no claim whatsoever that the
comparative p-values, taken individually, are any more valid
than the original ones. Clearly, they are not: low precision can-
not be conjured away. Our purpose is just to improve the way
in which models with different precisions are compared and
thus to avoid false impressions of relative success at zero-
alpha tests when, in fact, the success is due to comparatively
low precision. If we find, for instance, that a precisely estimated
model is rejected given its low p-value but would be accepted in
the light of its comparative p-value, we do not at all claim that
the model’s pricing errors are statistically insignificant. Rather,
we note that, if they had been estimated as imprecisely as those
in the imprecise model, we would not have worried about them.
That conclusion qualifies the results for the imprecise model, not
those for the precise one.

In Section 2, we review the link between R2 and the power of
zero-intercept tests. In Section 3, we introduce the comparative
p-values and discuss their main properties. In Section 4, we give
an illustration relating to the comparison between a liquidity-
augmented CAPM and the Fama–French three-factor model.
Section 5 concludes.

2. Sources of power

Fama and French (2012) treat R2 and power almost as syn-
onyms, but this misses a part of the picture that is relevant for
our purposes. In a simple regression, it is true that, given the slope
estimate, there is a one-to-one link between R2 and the t-statistic
for the slope, the first aspect of a CAPM test. But the relation with
the second aspect, the t-test on the intercept, is more complicated.
For illustrative purposes, consider a generic regression
Y ¼ aþ bX þ e with, initially, one regressor and the classic OLS
assumptions. We leave unspecified whether we consider a time-
series or a cross-sectional test of H0 : a ¼ 0.

Using standard notation, the OLS intercept estimate isba ¼ Y � bbX, telling us that the variance of bb affects the variance

of ba unless X equals zero. In a successful CAPM time-series regres-
sion, however, X is the risk premium, so one cannot count on a zero
X to eliminate the effect of imprecise betas. Likewise, in a cross-
section test, X is an average covariance or an average beta, which

is usually nonzero. The link between the variances of ba and bb is

varðbajXÞ ¼ varðY jXÞ þ varðbbjXÞX2

¼ 1
n

1þ X2dvarðXÞ
 !

varðeÞ; ð1Þ

with n the number of observations, dvarðXÞ ¼PiðXi � XÞ2=n, and
varðeÞ the variance of the regression error (the unexplained excess
return). In our context, all models use the same test returns Y (in
excess of the risk-free rate). So for a given dvarðYÞ, the regression
R2 determines the estimate of varðeÞ in (1). This is the channel that
Fama and French (2012) frequently refer to.

For a given error variance, however, the intercept is also esti-
mated imprecisely when the sample variance of the regressor is
small relative to its squared mean. For example, if the test returns
all have very similar covariances with the market excess return, a
zero cross-sectional alpha is more easily accepted.

In the multifactor case, imprecise estimates ba ¼ Y � bb0X can
also arise from multicollinearity. Eq. (1) generalizes to

varðbajXÞ ¼ 1
n

1þ X0dvarðXÞ�1X
� �

varðeÞ;

with dvarðXÞ ¼PiðXi � XÞðXi � XÞ0=n. Hence, a will be estimated
imprecisely when the factors are highly collinear. In sum, the mes-
sage is that anything that adversely affects the precision of the slope
estimates also adversely affects the standard error of the intercept
estimate.

3. Comparative p-values

Consider two competing asset pricing models, Model 1 and
Model 2, each with its own set of factors, X1 and X2. For any asset
excess return Y, Model j specifies the conditional mean excess
return, given information set I, as EðY jIÞ ¼ aj þ b0

jXj with aj ¼ 0

(zero pricing error). Let baj be an approximately unbiased, consis-
tent, and asymptotically normal estimate of aj, with consistent
standard error estimate seðbajÞ. The baj may be OLS, GLS, or GMM
estimates, and seðbajÞ may be a heteroskedasticity and/or autocor-
relation robust estimate. We first define comparative p-values for
the t-test and then for the Wald test.

3.1. Comparative p-values for a single alpha: definition

Using normal-theory asymptotic approximations, the p-value of
the null H0 : aj ¼ 0 is

pj ¼ Pr jZj > jtjj
� � ¼ 2Uð�jtjjÞ;

where tj ¼ baj=seðbajÞ is the t-statistic, Z is a standard normal variate,
and Uð�Þ is the standard normal distribution function.

Now, if one compares p1 with p2, any difference in the standard
errors seðba1Þ and seðba2Þ is ignored. It may thus occur that, for
example, jba2j > jba1j > 0 and seðba2Þ � seðba1Þ, resulting in p1 < p2.
In this case, Model 1 delivers a smaller pricing error, but, according
to the p-value, Model 2 does better at the zero-alpha test because
its alpha estimate is much less precise. The situation may arise, for
example, when Model 2 adds a not-so-relevant factor to Model 1
that is highly collinear with the other factors. Obviously, it would
be questionable, then, to claim success of Model 2 over Model 1
based on the p-value comparison alone. The problematic aspect
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