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We propose using a Realized GARCH (RGARCH) model to estimate the daily volatility of the short-term
interest rate in the euro-yen market. The model better fits the data and provides more accurate volatility
forecasts by extracting additional information from realized measures. In addition, we propose using the
ARMA-Realized GARCH (ARMA-RGARCH) model to capture the volatility clustering and the mean
reversion effects of interest rate behavior. We find the ARMA-RGARCH model fits the data better than
the simple RGARCH model does, but it does not provide superior volatility forecasts.
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1. Introduction

Short-term interest rates are widely recognized as key eco-
nomic variables. They are used frequently in financial economet-
rics models because they play an important role in evaluating
almost all securities and macroeconomic variables. However, many
popular models fail to capture the key features of interest rates and
do not fit the data well. A milestone in terms of interest rate mod-
els was the development of the generalized regime-switching
(GRS) model, proposed by Gray (1996). Conventional GARCH-
type and diffusion models failed to handle certain interest rate
events, such as explosive volatility, which would cause serious
problems in certain applications. He believed this failure may be
due to time variations in the parameter values. The GRS model
nests many interest rate models as special cases, and allows the
parameter values to vary with regime changes. Thus, the model
should provide a solution to the problem. He found that the GRS
model outperforms conventional single-regime GARCH-type mod-
els in out-of-sample forecasting. Unfortunately, the GRS model still
does not fit the data well, since almost all the reported parameters
of the most generalized version are nonsignificant.
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Another conceivable reason for the failure to model short-term
interest rates adequately is that the c-field is not sufficiently infor-
mative. When modeling interest rates using conventional GARCH-
type models, the only data used are the daily closing prices. All
data during trading hours are ignored. As high-frequency data have
become more available, recent literature has introduced a number
of more efficient nonparametric estimators of integrated volatility
(see Barndorff-Nielsen and Shephard, 2004; Barndorff-Nielsen
et al., 2008; and Hansen and Horel, 2009). Examples of models that
incorporate these realized measures include the multiplicative
error model (MEM) of Engle and Gallo (2006), and the HEAVY
model of Shephard and Sheppard (2010). These models incorporate
multiple latent variables of daily volatility. Then, within the frame-
work of stochastic volatility models, Takahashi et al. (2009) pro-
pose a joint model for return and realized measures. Shirota
et al. (2014) introduce the realized stochastic volatility (RSV)
model, which incorporates leverage and long memory. A Heston
model studies the joint behavior of return and volatility, and shows
decisively different extremal behavior to the conventional GARCH
and SV models proposed by Ehlert et al. (2015).

In this study, we model the short-term interest rate in the euro-
yen market using the Realized GARCH (RGARCH) framework pro-
posed by Hansen et al. (2012). Section 2 introduces the RGARCH
framework, including the log-linear specification, the estimation
method, the conditional distributions, the robust QLIKE loss
function, and the value-at-risk-based loss function. Here, we also
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present the model confidence set (MCS) procedure we use to eval-
uate the volatility forecasting performance. Section 3 provides a
brief description of our data and the realized measures. Section 4
reports the in-sample empirical results and evaluates the rolling-
window volatility forecasting performance. Then, in Section 5, we
introduce an ARMA-Realized GARCH (ARMA-RGARCH) framework.
Here, we present our empirical results, and compare them to those
of the simple RGARCH model. Lastly, Section 6 concludes the paper.

2. Methodology
2.1. Model specification

We adopt the RGARCH model with its log-linear specification,
as proposed by Hansen et al. (2012). In Section 5, we propose an
extension of the model to capture the well-known mean reversion
and volatility effects in short-term interest rate behavior. The
RGARCH(p,q) model is specified as follows:
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where z; ~ [.1.D(0,1), u; ~ II1.D(0, 62), ¢ is a zero-mean series, and
h; and x; denote the conditional variance and realized measure,
respectively. Then, t(z/) is the leverage function constructed from
Hermite polynomials. Here, we adopt the simple quadratic form:
T(2;) = ;2 + N, (z2 — 1). This choice is proper for two reasons. First,
it satisfies E[t(z;)] = O for any standard distribution with E[z{] = 0
and Var[z,] = 1. Second, it is proportional to the news impact curve
discussed in Engle and Ng (1993). Thus, it can capture the asymmet-
ric effect of price shocks on daily volatility. The news impact curve
is defined as v(z) = E(log h¢|z;_y = z) — E(log h;).

Eqgs. (1) and (2) construct a GARCH-X model, with the restriction
that the coefficient of the squared return is zero. Eq. (3) is called
the measurement equation, because x, is a measure of h,. The mea-
surement equation completes the model, using the leverage func-
tion 7(z;) to provide a simple way to investigate the joint
dependence of r; and x,. Numerous studies on market microstruc-
tures argue that returns are dependent on trading intensity and
liquidity indicators, such as volume, order flow, and the bid-ask
spread (see Amihud (2002), Admati and Pfleiderer (1988),
Brennan and Subrahmanyam (1996), and Hasbrouck and Seppi
(2001)). Because the intraday volatility is linked to the volume,
order flow, and trading intensity directly, it should be dependent
on the return. Therefore, the measurement equation is important
from a theoretical point of view. Unlike other models that incorpo-
rate realized measures in the variance equation, such as the MEM
and HEAVY models, the realized measure is not treated as an
exogenous variable. When the realized measure is a consistent
estimator of integrated volatility, it should be viewed as the condi-
tional variance plus an innovation term. The conditional variance is
adapted to a much richer o-field, F; = 6(re,Te-1,. .., Xe, Xe_1, - - .)-
Conventional GARCH and SV-type models only use daily closing
prices. In comparison, the additional information included in the
realized measure on intraday volatility is expected to promote
the fit to the data and the forecasting accuracy of conditional
volatility. Moreover, the logarithmic conditional variance can be
shown to follow an ARMA process:
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The logarithmic conditional variance, h;, is driven by both the
innovation of return and the realized measure. The leverage effect
is already indirectly embedded in the variance equation. The
persistence parameter, 7, is given by @ = ";(; + ¢7;).

2.2. Estimation method

Following Hansen et al. (2012), we summarize the estimation
method in this section. The model is estimated using the quasi-
maximum likelihood (QML) method. The likelihood function of
the Gaussian specification is given by
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Since conventional GARCH-type models do not model realized
measures, it is meaningless to compare the joint log likelihood to
those of the conventional GARCH models. However, we can derive
the partial likelihood of the RGARCH model and compare that with
the log likelihood of the GARCH models. The joint conditional
density of the return and realized measures is
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Then, the logarithmic form is
logf(re, %c|Fe-1) = 10g f(re|Fe-1) + 108 f(Xere, Fe-1). (7

Thus, the joint log likelihood of z; and u, under the Gaussian
specification can be split as follows:
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Then, the partial likelihood of the model is defined as
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Hansen et al. (2012) obtained that v/n(0, — 0) — N(O,I[,IJHI(}]>

where expressions for I, and J, are given in the Appendix.

An alternative estimation method for GARCH-type models is
proposed by Ossandon and Bahamonde (2011). It is possible to
have a novel state space representation and an efficient approach
based on the Extended Kalman Filter (EKF). Since the structure of
the RGARCH model is quite complicated, this is left as a topic for
further research.

We also change the assumption of a standard normal distribu-
tion on z; to a more realistic distribution. Here, we adopt the distri-
bution proposed by Fernandez and Steel (1998) that allows for
skewness in any symmetric and continuous distribution by chang-
ing the scale of the density function:
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where ¢ is the shape parameter and H(.) is the Heaviside function.
The distribution is symmetric when ¢ is equal to 1. The mean and
variance are defined as

t=Mi(g—-¢) (11)
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respectively, where

My =2 /jzkf(z)dz. (13)
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