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1. Introduction

This paper proposes a modeling framework that draws upon the
self-exciting behavior of stock returns around a financial market
crash, which is similar to the seismic activity around earthquakes.
Incorporating the tendency for shocks to be followed by new
shocks, our framework is able to create probability predictions
on a medium-term financial market crash. A large literature in
finance has focused on predicting the risk of downward price
movements one-step ahead with measures like Value-at-Risk and
Expected Shortfall. Our approach differs however as we interpret
financial crashes as earthquakes in the financial market, which
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allows us to develop an Early Warning System (EWS) for crash days
within a given period. The EWS is tested on S&P 500 data during
the recent financial crisis, starting from September 1, 2008. As will
become apparent in later sections, our modeling framework differs
from Extreme Value models as we allow dependencies across arri-
val times and magnitudes of shocks. At the same time, our frame-
work differs from the conventional GARCH models by generating
highly insightful medium term forecasts, while not having to make
stringent assumptions on the tail behavior of error distributions.
This makes our approach rather easy to implement and understand
in practice.

The identification and prediction of crashes is very important to
traders, regulators of financial markets and risk management
because a series of large negative price movements during a short
time interval can have severe consequences. For example, on Black
Monday, that is October 19, 1987, the S&P 500 index registered its
worst daily percentage loss of 20.5%. During the recent credit crisis,
financial indices declined dramatically for numerous days, thereby
suffering its worst yearly percentage loss of 38.5 % in 2008.
Unfortunately, crashes are not easy to predict, and there still is a
need for tools to accurately forecast the timing of a series of large
negative price movements in financial markets.

To initiate the construction of our modeling framework for
stock market crashes, we first focus on the potential causes of such
crashes. Sornette (2003) summarizes that computer trading, and
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the increased trading of derivative securities, illiquidity, and trade
and budget deficits and also overvaluation can provoke subsequent
large negative price movements. More importantly, Sornette
(2003) points out that speculative bubbles leading to crashes are
likely to result from a positive herding behavior of investors. This
positive herding behavior causes crashes to be locally
self-enforcing. Hence, while bubbles can be triggered by an exoge-
nous factor, instability grows endogenously. A model for stock
market crashes should therefore be able to capture this
self-excitation. Notably, such a self-excitation can also be observed
in seismic behavior around earthquake sequences, where an earth-
quake usually generates aftershocks which in turn can generate
new aftershocks and so on. For many academics (and perhaps prac-
titioners), earthquakes and stock returns therefore share character-
istics typically observable as the clustering of extremes and serial
dependence.

Potential similarities across the behavior of stock returns around
crashes and the dynamics of earthquake sequences have been noted
in the so-called econophysics literature, in which physics models
are applied to economics.” In contrast to the studies in the econo-
physics literature and also to related studies like Bowsher (2007)
and Clements and Liao (2013), in our framework we do not model
the (cumulative) returns but only the extreme returns. As such, we
most effectively exploit the information contained in the returns
about the crash behavior. As Ait-Sahalia et al. (2013) already show,
only taking the jump dynamics of returns into account to approxi-
mate the timing of crashes gives more accurate results than using
the full distribution of the returns. As is well known, the distribution
of stock returns is more heavy-tailed than the Gaussian distribution
as extreme returns occur more often than can be expected under nor-
mality. Furthermore, the distribution of stock returns is usually neg-
atively skewed. As risk in financial markets is predominantly related
to extreme price movements, we propose to model only extreme
(negative) returns in order to improve predictions.

To model the extreme (negative) returns we use a particular
model that is often used for earthquake sequences, and which is
the so-called Epidemic-Type Aftershock Sequence model (ETAS).
This model has been developed by Ogata (1988) and its use for
earthquakes is widely investigated by geophysicists.® In the ETAS
model a Hawkes process, an inhomogeneous Poisson process, is used
to model the occurrence rate of earthquakes above a certain thresh-
old. The jump rate of the Hawkes process increases when a jump (or
shock) arrives after which the rate decays as a function of the time
passed since the jump. As the probability of jumps increases after
a jump has occurred, the Hawkes process is thus called
self-exciting. The ETAS model has been exploited for crime rates
(Mohler et al., 2011) and for the spread of red banana plants
(Balderama et al., 2012). Interestingly, the ETAS model has also been
applied to financial data, for example to model arrival data of buy
and sell trades (Hewlett, 2006), the duration between trades
(Bauwens and Hautsch, 2009) or the returns on multiple indices
(Ait-Sahalia et al., 2013; Embrechts et al., 2011; Grothe et al., 2014).

Our modeling framework entails that we use the ETAS model as a
tool to warn for an upcoming crash (read: earthquake) in a financial
market. As Herrera and Schipp (2009), Chavez-Demoulin et al.
(2005) and Chavez-Demoulin and McGill (2012), already showed
when deriving their Value-at-Risk and Expected Shortfall estimates,
the ETAS model can contribute to the modeling and prediction of risk
in finance. However, in contrast to Herrera and Schipp (2009),
Chavez-Demoulin et al. (2005) and Chavez-Demoulin and McGill
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(2012) who do not provide a practical tool like an Early Warning
System or an easily interpretable measure to quantify the risk of
crashes, but instead we provide a ready-to-use application of the
information from an estimated ETAS model by means of an EWS.

In somewhat more detail, we consider several specifications of
the key triggering functions. The parameters of the ETAS models
are estimated by maximum likelihood. And, to judge the fit of the dif-
ferent models, we compare the log-likelihoods and Akaike informa-
tion criterion (AIC) values. We also develop simulation procedures to
graphically assess whether data generated by the models can repro-
duce features of, for example, the S&P 500 data. The correctness of
the ETAS model specification is further evaluated by means of the
residual analysis methods as proposed in Ogata (1988). We review
the performance of our Early Warning System using the hit rate
and the Hanssen—Kuiper Skill Score, and compare it to EWS based
on some commonly used and well known volatility models.

The estimation results confirm that crashes are self-enforcing.
Furthermore we find that on average larger events trigger more
events than smaller events and that larger extremes are observed
after the occurrence of more and/or big events than after a tranquil
period. Testing our EWS on S&P 500 data during the recent financial
crisis, we find positive Hanssen-Kuiper Skill Scores. Thus as our
modeling framework exploits the self-exciting behavior of stock
returns around financial market crashes, it is capable of creating
crash probability predictions on the medium term. Furthermore
our modeling framework seems capable of exploiting information
in the returns series not captured by the volatility models.

Our paper is organized as follows. In Section 2 the model spec-
ifications are discussed, as well as the estimation method.
Estimation results are presented in Section 3. Section 4 contains
an assessment of the models by means of simulations and residual
analysis. The Early Warning Systems are reviewed in Section 5 and
compared to EWS based on volatility models in Section 6. Section 7
concludes also with directions for further research.

2. Models

The Epidemic-Type Aftershock Sequence (ETAS) model is a
branching model, in which each event can trigger subsequent
events, which in turn can trigger subsequent events of their own.
The ETAS model is based on the mutually self-exciting Hawkes
point process, which is an inhomogeneous Poisson process. For
the Hawkes process, the intensity at which events arrive at time
t depends on the history of events prior to time t.

Consider an event process (t;,my),..., (t,,m,) where t; defines
the time and m; the mark of event i. Let , = {(t;,m;) : t; < tg} rep-
resent the entire history of events up to time t. The conditional
intensity of jump arrivals following a Hawkes process is given by

A0 He) = p+ Y gt — ti,my) (1)

i<t

where pt > 0 and g(s — t;, m;) > 0 whenever s > 0 and 0 elsewhere.
The conditional intensity consists of a constant term p and a
self-exciting function g(s), which depends on the time passed since
jumps that occurred before t and the size of these jumps. The rate at
which events take place is thus separated in a long-term back-
ground component and a short-term clustering component describ-
ing the temporal distribution of aftershocks. The conditional
intensity uniquely determines the distribution of the process.

We consider the following specifications of event triggering
functions

Ko
owt_tivmi = c(m; 2
Epowl ) Tt + 1) (m;) (2)
Sexp(t — ti,my) = Koe Pt c(my) (3)
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