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a b s t r a c t

A central problem for regulators and risk managers concerns the risk assessment of an aggregate portfolio
defined as the sum of d individual dependent risks Xi. This problem is mainly a numerical issue once the
joint distribution of X1;X2; . . . ;Xdð Þ is fully specified. Unfortunately, while the marginal distributions of
the risks Xi are often known, their interaction (dependence) is usually either unknown or only partially
known, implying that any risk assessment of the portfolio is subject to model uncertainty.

Previous academic research has focused on the maximum and minimum possible values of a given risk
measure of the portfolio when only the marginal distributions are known. This approach leads to wide
bounds, as all information on the dependence is ignored. In this paper, we integrate, in a natural way,
available information on the multivariate dependence. We make use of the Rearrangement Algorithm
(RA) of Embrechts et al. (2013) to provide bounds for the risk measure at hand. We observe that incor-
porating the information of a well-fitted multivariate model may, or may not, lead to much tighter
bounds, a feature that also depends on the risk measure used. In particular, the risk of underestimating
the Value-at-Risk at a very high confidence level (as used in Basel II) is typically significant, even if one
knows the multivariate distribution almost completely.

Our results make it possible to determine which risk measures can benefit from adding dependence
information (i.e., leading to narrower bounds when used to assess portfolio risk) and, hence, to identify
those situations for which it would be meaningful to develop accurate multivariate models.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The risk assessment of high dimensional portfolios X is a core
issue in the regulation of financial institutions and in quantitative
risk management. In this regard, one usually attempts to measure
the risk of the aggregate portfolio (defined as the sum of individual
risks Xi) using a risk measure, such as the standard deviation or the
Value-at-Risk (VaR). It is clear that solving this problem is mainly a
numerical issue once the joint distribution of X :¼ X1;X2; . . . ;Xdð Þ is
completely specified. Unfortunately, estimating a multivariate

distribution is a difficult task, and thus the assessment of portfolio
risk is prone to model misspecification (model risk). At present,
there is no generally accepted framework for quantifying model
risk. A natural way to do so consists in finding the minimum and
maximum possible values of a chosen risk measure evaluated in
a family of candidate models. For example, Cont (2006) found
bounds on prices of contingent claims, incorporating model risk
on the choice of the risk neutral measure used for pricing. In the
same spirit, Kerkhof et al. (2010) assessed model risk in the context
of management of market risk by computing the worst-case VaR
across a range of models chosen based on econometric estimates
involving past and present data. A related approach can be found
in Alexander and Sarabia (2012), where the authors compare VaR
estimates of the model actually used with those of a benchmark
model (i.e., the regulatory model) and use the observed deviations
to estimate a capital charge supplement to cover for model risk.

More recently, Embrechts et al. (2013) proposed the
Rearrangement Algorithm (RA) to find (approximate) bounds on
the VaR of high dimensional portfolios, assuming that marginal
distributions of the individual risks are known (or prone to negligi-
ble model risk) and that the dependence structure (also called the
copula) among the risks is not specified. This assumption is
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natural, as fitting the marginal distribution of a single risk Xi

ði ¼ 1;2; . . . ; dÞ can often be performed in a relatively accurate
manner, whereas fitting a multivariate model for X is challenging,
even when the number of observations is large. The bounds
derived by Embrechts et al. (2013) are wide, as they neglect all
information on the interaction among the individual risks. In this
paper, we propose to integrate in a natural way the information
from a fitted multivariate model.

Standard approaches to portfolio modeling use a multivariate
Gaussian distribution or a multivariate Student’s t distribution;
however, there is ample evidence that these models are not always
adequate. Specifically, while the multivariate Gaussian distribution
can be suitable as a fit to a dataset ‘‘as a whole,’’ this approach is
usually a poor choice if one wants to use it to obtain accurate esti-
mates of the probability of simultaneous extreme (‘‘tail’’) events, or
if one wants to estimate the VaR of the aggregate portfolio

S ¼
Pd

i¼1Xi at a given high confidence interval; see e.g., McNeil
et al. (2010). There is recent literature dealing with the develop-
ment of flexible multivariate models that allow a better fit to the
data. However, no model is perfect, and while such developments
are needed for an accurate assessment of portfolio risk, they are
only useful to regulators and risk managers if they are able to sig-
nificantly reduce the model risk inherent in risk assessments.

In this paper, we develop a framework that allows for practical
quantification of model risk. Our results make it possible to iden-
tify risk measures for which the additional information of a
well-fitted multivariate model reduces the model risk significantly,
making these measures meaningful candidates for use by risk
managers and regulators. In particular, we observe from numerical
experiments that the portfolio VaR at a very high confidence level
(as used in the current Basel regulation) might be prone to such a
high level of model risk that, even if one knows the multivariate
distribution nearly perfectly, its range of possible values remains
wide. In fact, one may then not even be able to reduce the model
risk as computed in Embrechts et al. (2013), where no information
on the dependence among the risks is used.

The idea pursued in our approach is intuitive and corresponds
to real-world situations. Let us assume that we have N observa-
tions for X, i.e. our dataset consists of N vectors of dimension
d; fxigi¼1;...;N where xi ¼ ðxi1; . . . ; xidÞ. We also assume that a multi-
variate model has already been fitted to this dataset. This fitted dis-
tribution is a candidate joint distribution of X (benchmark model).
However, we are aware that the model is subject to misspecifica-
tion, and we split Rd into two disjoint subsets: F will be referred
to as the ‘‘fixed’’ or ‘‘trusted ’’ area and U as the ‘‘unfixed’’ or ‘‘un-
trusted’’ area. Specifically, U reflects the area in which the fitted
model is not considered appropriate. Note that

Rd ¼ F
[
U; F

\
U ¼£:

If one has perfect trust in the model, then all realizations of X reside
in the ‘‘trusted’’ part (U ¼£) and there is no model risk. By con-
trast, F ¼£ when there is no trust in the fit of the dependence,
which corresponds to the case studied by Embrechts et al. (2013).

A closely related problem has already been studied for
two-dimensional portfolios (d ¼ 2) when some information on
the dependence (copula) is available; see e.g., Tankov (2011) and
Bernard et al. (2012). Tankov (2011) uses extreme dependence sce-
narios to find model-free bounds for the prices of some bivariate
derivatives, whereas Bernard et al. (2014) use such scenarios to
determine optimal investment strategies for investors with
state-dependent constraints. While both applications show that
finding bounds on copulas in the bivariate case can be of interest,
portfolio risk management involves more than two risks.
Unfortunately, finding bounds on copulas in the general d-dimen-
sional case in the presence of constraints is not only more difficult

but also less useful for risk management applications. The reason is
that when d > 2, in most cases, the worst copula (under con-
straints) of a vector X does not give rise to the highest possible

value of the risk measure at hand of S ¼
Pd

i¼1Xi, because the mar-
ginal distributions also have an impact; see e.g., Bernard et al.
(2014) for illustrations of this feature.

Hence, in this paper we study bounds for risk measures of the
aggregate risk S by using information on the multivariate joint dis-
tribution of its components Xi (which embeds information on the
dependence) rather than using copula information. Some previous
papers have dealt explicitly with the presence of (partial) informa-
tion on the dependence structure: Embrechts and Puccetti (2010)
and Embrechts et al. (2013) consider the situation in which some
of the bivariate distributions are known; Denuit et al. (1999) study
VaR bounds assuming that the joint distribution of the risks is
bounded by some distribution; and Bernard et al. (2015) compute
VaR bounds when the variance of the sum is known. However, the
setup in these papers is often difficult to reconcile with the infor-
mation that is available in practice; or, it does not make use of
all available dependence information. Furthermore, while the
bounds that are proposed in these papers might be sharp (attain-
able), they do not always make it possible to strengthen the uncon-
strained1 bounds in a significant way and are often difficult to
compute numerically, especially for higher dimensions with inho-
mogeneous risks.

The paper is organized as follows. We lay out our setting in
Section 2. Sections 3 and 4 are devoted to the development of a
practical method for deriving bounds on risk measures. This
method relies on a (discretized) matrix representation of the port-
folio X and builds on the Rearrangement Algorithm that was
recently developed by Puccetti and Rüschendorf (2012) and further
studied by Embrechts et al. (2013). We illustrate the results using
various examples. In Section 5 we provide two applications. First,
we find the minimum variance portfolio under model uncertainty,
and next we assess the model risk of a credit portfolio.

The numerical results show that the proposed bounds, which
take into account dependence information, typically outperform
the (unconstrained) ones already available in the literature and
thus allow for more realistic assessment of model risk. However,
model risk remains a significant concern, especially when using a
risk measure that focuses on ‘‘tail type’’ events, such as the VaR
computed at very high confidence level.

2. Setting

Let X :¼ ðX1;X2; . . . ;XdÞ be some random vector of interest hav-
ing finite mean and defined on an atomless probability space. Let
F � Rd and U ¼ Rd n F . We assume that we know.

(i) the marginal distribution Fi of Xi on R for i ¼ 1;2; . . . ; d,
(ii) the distribution of X j X 2 Ff g,

(iii) the probability pF :¼ PðX 2 FÞ and pU :¼ PðX 2 UÞ ¼ 1� pF .

Without loss of generality, we can assume that F ¼£ if and
only if pF ¼ 0. As the joint distribution of X is only fully specified
on the subarea F of Rd, risk measures (e.g., the VaR) of the aggre-

gate risk
Pd

i¼1Xi cannot be computed precisely (unless pF ¼ 1). In
fact, there are many vectors X that satisfy the properties (i), (ii)
and (iii) but have a different risk measure of their sum. In order
to derive the maximum (minimum) possible value, it is convenient
to consider a mixture representation. Specifically, consider the
indicator variable I corresponding to the event ‘‘X 2 F ’’

1 Here, ‘‘unconstrained bounds’’ refers to bounds that are obtained when only the
marginal distributions are fixed, but no dependence information is used.
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